Fernández-López David, Faustino Joel, Klibanov Alexander L, Derugin Nikita, Blanchard Elodie, Simon Franziska, Leib Stephen L, Vexler Zinaida S
Department of Neurology, University of California-San Francisco, San Francisco, California 94158.
Department of Medicine, University of Virginia, Charlottesville, Virginia 22908, and.
J Neurosci. 2016 Mar 9;36(10):2881-93. doi: 10.1523/JNEUROSCI.0140-15.2016.
Perinatal stroke leads to significant morbidity and long-term neurological and cognitive deficits. The pathophysiological mechanisms of brain damage depend on brain maturation at the time of stroke. To understand whether microglial cells limit injury after neonatal stroke by preserving neurovascular integrity, we subjected postnatal day 7 (P7) rats depleted of microglial cells, rats with inhibited microglial TGFbr2/ALK5 signaling, and corresponding controls, to transient middle cerebral artery occlusion (tMCAO). Microglial depletion by intracerebral injection of liposome-encapsulated clodronate at P5 significantly reduced vessel coverage and triggered hemorrhages in injured regions 24 h after tMCAO. Lack of microglia did not alter expression or intracellular redistribution of several tight junction proteins, did not affect degradation of collagen IV induced by the tMCAO, but altered cell types producing TGFβ1 and the phosphorylation and intracellular distribution of SMAD2/3. Selective inhibition of TGFbr2/ALK5 signaling in microglia via intracerebral liposome-encapsulated SB-431542 delivery triggered hemorrhages after tMCAO, demonstrating that TGFβ1/TGFbr2/ALK5 signaling in microglia protects from hemorrhages. Consistent with observations in neonatal rats, depletion of microglia before tMCAO in P9 Cx3cr1(GFP/+)/Ccr2(RFP/+) mice exacerbated injury and induced hemorrhages at 24 h. The effects were independent of infiltration of Ccr2(RFP/+) monocytes into injured regions. Cumulatively, in two species, we show that microglial cells protect neonatal brain from hemorrhage after acute ischemic stroke.
围产期卒中会导致严重的发病情况以及长期的神经和认知缺陷。脑损伤的病理生理机制取决于卒中发生时的脑成熟度。为了了解小胶质细胞是否通过维持神经血管完整性来限制新生鼠卒中后的损伤,我们对出生后第7天(P7)的小胶质细胞缺失的大鼠、小胶质细胞TGFbr2/ALK5信号传导受抑制的大鼠以及相应的对照组进行了短暂性大脑中动脉闭塞(tMCAO)。在P5时通过脑内注射脂质体包裹的氯膦酸盐来耗尽小胶质细胞,显著降低了血管覆盖率,并在tMCAO后24小时引发了损伤区域的出血。小胶质细胞的缺失并未改变几种紧密连接蛋白的表达或细胞内重新分布,不影响tMCAO诱导的IV型胶原降解,但改变了产生TGFβ1的细胞类型以及SMAD2/3的磷酸化和细胞内分布。通过脑内脂质体包裹的SB - 431542给药选择性抑制小胶质细胞中的TGFbr2/ALK5信号传导,在tMCAO后引发了出血,表明小胶质细胞中的TGFβ1/TGFbr2/ALK5信号传导可防止出血。与新生大鼠的观察结果一致,在P9 Cx3cr1(GFP/+)/Ccr2(RFP/+)小鼠中,在tMCAO前耗尽小胶质细胞会加重损伤,并在24小时时诱导出血。这些效应与Ccr2(RFP/+)单核细胞浸润到损伤区域无关。总体而言,在两个物种中,我们表明小胶质细胞可保护新生脑在急性缺血性卒中后免于出血。