Suppr超能文献

社区动脉粥样硬化风险研究神经心理学成套测验的因子结构:跨血管因素和人口统计学特征的不变性评估

Factor structure of the ARIC-NCS Neuropsychological Battery: An evaluation of invariance across vascular factors and demographic characteristics.

作者信息

Rawlings Andreea M, Bandeen-Roche Karen, Gross Alden L, Gottesman Rebecca F, Coker Laura H, Penman Alan D, Sharrett A Richey, Mosley Thomas H

机构信息

Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health.

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health.

出版信息

Psychol Assess. 2016 Dec;28(12):1674-1683. doi: 10.1037/pas0000293. Epub 2016 Mar 10.

Abstract

Neuropsychological test batteries are designed to assess cognition in detail by measuring cognitive performance in multiple domains. This study examines the factor structure of tests from the ARIC-NCS battery overall and across informative subgroups defined by demographic and vascular risk factors in a population of older adults. We analyzed neuropsychological test scores from 6,413 participants in the Atherosclerosis Risk in Communities Neurocognitive Study (ARIC-NCS) examined in 2011-2013. Confirmatory factor analysis (CFA) was used to assess the fit of an a priori hypothesized 3-domain model, and fit statistics were calculated and compared to 1- and 2-domain models. Additionally, we tested for stability (invariance) of factor structures among different subgroups defined by diabetes, hypertension, age, sex, race, and education. Mean age of participants was 76 years, 76% were White, and 60% were female. CFA on the a priori hypothesized 3-domain structure, including memory, sustained attention and processing speed, and language, fit the data better (comparative fit index [CFI] = 0.973, root mean square error of approximation [RMSEA] = 0.059) than the 2-domain (CFI = 0.960, RMSEA = 0.070) and 1-domain (CFI = 0.947, RMSEA = 0.080) models. Bayesian information criterion value was lowest, and quantile-quantile plots indicated better fit, for the 3-domain model. Additionally, multiple-group CFA supported a common structure across the tested demographic subgroups, and indicated strict invariance by diabetes and hypertension status. In this community-based population of older adults with varying levels of cognitive performance, the a priori hypothesized 3-domain structure fit the data well. The identified factors were configurally invariant by age, sex, race, and education, and strictly invariant by diabetes and hypertension status. (PsycINFO Database Record

摘要

神经心理测试组合旨在通过测量多个领域的认知表现来详细评估认知能力。本研究考察了ARIC-NCS测试组合整体的因素结构,以及在一个老年人群体中,由人口统计学和血管危险因素定义的信息丰富的亚组的因素结构。我们分析了2011年至2013年在社区动脉粥样硬化风险神经认知研究(ARIC-NCS)中6413名参与者的神经心理测试分数。采用验证性因素分析(CFA)来评估一个先验假设的三领域模型的拟合度,并计算拟合统计量,并与一领域和两领域模型进行比较。此外,我们还测试了由糖尿病、高血压、年龄、性别、种族和教育程度定义的不同亚组之间因素结构的稳定性(不变性)。参与者的平均年龄为76岁,76%为白人,60%为女性。对先验假设的三领域结构(包括记忆、持续注意力和处理速度以及语言)进行的CFA比两领域(CFI = 0.960,近似均方根误差[RMSEA] = 0.070)和一领域(CFI = 0.947,RMSEA = 0.080)模型更适合数据(比较拟合指数[CFI] = 0.973,近似均方根误差[RMSEA] = 0.059)。贝叶斯信息准则值最低,并且分位数-分位数图表明三领域模型的拟合更好。此外,多组CFA支持所测试的人口统计学亚组之间的共同结构,并表明糖尿病和高血压状态具有严格的不变性。在这个基于社区的、认知表现水平各异的老年人群体中,先验假设的三领域结构很好地拟合了数据。所确定的因素在年龄、性别、种族和教育程度方面具有构型不变性,并在糖尿病和高血压状态方面具有严格不变性。(PsycINFO数据库记录

相似文献

2
The Uniform Dataset 3.0 Neuropsychological Battery: Factor Structure, Invariance Testing, and Demographically Adjusted Factor Score Calculation.
J Int Neuropsychol Soc. 2020 Jul;26(6):576-586. doi: 10.1017/S135561772000003X. Epub 2020 Feb 17.
3
Examination of the Factor Structure of a Global Cognitive Function Battery across Race and Time.
J Int Neuropsychol Soc. 2016 Jan;22(1):66-75. doi: 10.1017/S1355617715001113. Epub 2015 Nov 13.
5
Latent Factor Structure and Measurement Invariance of the NIH Toolbox Cognition Battery in an Alzheimer's Disease Research Sample.
J Int Neuropsychol Soc. 2021 May;27(5):412-425. doi: 10.1017/S1355617720000922. Epub 2020 Oct 5.
7
Measurement equivalence of neuropsychological tests across education levels in older adults.
J Clin Exp Neuropsychol. 2014;36(10):1042-54. doi: 10.1080/13803395.2014.967661. Epub 2014 Nov 14.
8
Factor structure of the Harmonized Cognitive Assessment Protocol neuropsychological battery in the Health and Retirement Study.
J Int Neuropsychol Soc. 2024 Jan;30(1):47-55. doi: 10.1017/S135561772300019X. Epub 2023 Jul 14.

引用本文的文献

1
Longitudinal Changes in Brain Diffusion Characteristics Associated With Cognition and Vascular Risk Factors: The ARIC-NCS Study.
Neurology. 2025 Aug 26;105(4):e213867. doi: 10.1212/WNL.0000000000213867. Epub 2025 Jul 24.
3
Evaluating Social Determinants of Health-Based Alternatives to Race-Based Cognitive Normative Models.
Neurology. 2024 Dec 10;103(11):e210030. doi: 10.1212/WNL.0000000000210030. Epub 2024 Nov 15.
4
Patterns of cognitive domain abnormalities enhance discrimination of dementia risk prediction: The ARIC study.
Alzheimers Dement. 2024 Jul;20(7):4559-4571. doi: 10.1002/alz.13876. Epub 2024 Jun 14.
6
Cognitive phenotypes in late-onset epilepsy: results from the atherosclerosis risk in communities study.
Front Neurol. 2023 Aug 24;14:1230368. doi: 10.3389/fneur.2023.1230368. eCollection 2023.
7
Parity and Risk of Dementia in Women: The Atherosclerosis Risk in Communities Study.
J Womens Health (Larchmt). 2023 Oct;32(10):1031-1040. doi: 10.1089/jwh.2023.0030. Epub 2023 Aug 24.
8
Associations of Vascular Risk and Amyloid Burden with Subsequent Dementia.
Ann Neurol. 2022 Oct;92(4):607-619. doi: 10.1002/ana.26447. Epub 2022 Aug 3.
10
Endurance and gait speed relationships with mild cognitive impairment and dementia.
Alzheimers Dement (Amst). 2022 Feb 9;14(1):e12281. doi: 10.1002/dad2.12281. eCollection 2022.

本文引用的文献

1
Structural Model Evaluation and Modification: An Interval Estimation Approach.
Multivariate Behav Res. 1990 Apr 1;25(2):173-80. doi: 10.1207/s15327906mbr2502_4.
2
Vascular dementia.
Lancet. 2015 Oct 24;386(10004):1698-706. doi: 10.1016/S0140-6736(15)00463-8.
3
Cardiovascular risk factors and future risk of Alzheimer's disease.
BMC Med. 2014 Nov 11;12:130. doi: 10.1186/s12916-014-0130-5.
4
Challenges of multimorbidity of the aging brain: a critical update.
J Neural Transm (Vienna). 2015 Apr;122(4):505-21. doi: 10.1007/s00702-014-1288-x. Epub 2014 Aug 5.
5
Calibration and validation of an innovative approach for estimating general cognitive performance.
Neuroepidemiology. 2014;42(3):144-53. doi: 10.1159/000357647. Epub 2014 Jan 28.
6
The effects of aging and Alzheimer's disease on cerebral cortical anatomy: specificity and differential relationships with cognition.
Neuroimage. 2013 Aug 1;76:332-44. doi: 10.1016/j.neuroimage.2013.02.059. Epub 2013 Mar 16.
7
Effect of lifestyle activities on Alzheimer disease biomarkers and cognition.
Ann Neurol. 2012 Nov;72(5):730-8. doi: 10.1002/ana.23665.
8
Confirmatory factor analysis of the ADNI Neuropsychological Battery.
Brain Imaging Behav. 2012 Dec;6(4):528-39. doi: 10.1007/s11682-012-9190-3.
10
Cognitive decline in the elderly: an analysis of population heterogeneity.
Age Ageing. 2011 Nov;40(6):684-9. doi: 10.1093/ageing/afr101. Epub 2011 Sep 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验