Suppr超能文献

基于分形分析和灰度共生矩阵法评估肾髓质再灌注损伤

Fractal analysis and Gray level co-occurrence matrix method for evaluation of reperfusion injury in kidney medulla.

作者信息

Pantic Igor, Nesic Zorica, Paunovic Pantic Jovana, Radojević-Škodrić Sanja, Cetkovic Mila, Basta Jovanovic Gordana

机构信息

Laboratory for Cellular Physiology, Institute of Medical Physiology, Faculty of Medicine, University of Belgrade, Visegradska 26/II, RS-11129 Belgrade, Serbia.

Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, RS-11129 Belgrade, Serbia.

出版信息

J Theor Biol. 2016 May 21;397:61-7. doi: 10.1016/j.jtbi.2016.02.038. Epub 2016 Mar 7.

Abstract

Fractal analysis and Gray level co-occurrence matrix method represent two novel mathematical algorithms commonly used in medical sciences as potential parts of computer-aided diagnostic systems. In this study, we tested the ability of these methods to discriminate the kidney medullar tissue suffering from reperfusion injury, from normal tissue. A total of 320 digital micrographs of Periodic acid-Schiff (PAS) - stained kidney medulla from 16 Wistar albino mice (20 per animal), were analyzed using National Institutes of Health ImageJ software (NIH, Bethesda, MD) and its plugins. 160 micrographs were obtained from the experimental group with induced reperfusion injury, and another 160 were obtained from the controls. For each micrograph we calculated the values of fractal dimension, lacunarity, as well as five GLCM features: angular second moment, entropy, inverse difference moment, GLCM contrast, and GLCM correlation. Discriminatory value of the parameters was tested using receiver operating characteristic (ROC) analysis, by measuring the area below ROC curve. The results indicate that certain features of GLCM algorithm have excellent discriminatory ability in evaluation of damaged kidney tissue. Fractal dimension and lacunarity as parameters of fractal analysis also had a relatively good discriminatory value in differentiation of injured from the normal tissue. Both methods have potentially promising application in future design of novel techniques applicable in cell physiology, histology and pathology.

摘要

分形分析和灰度共生矩阵方法是医学中常用的两种新型数学算法,可作为计算机辅助诊断系统的潜在组成部分。在本研究中,我们测试了这些方法区分遭受再灌注损伤的肾髓质组织与正常组织的能力。使用美国国立卫生研究院ImageJ软件(美国国立卫生研究院,马里兰州贝塞斯达)及其插件,对16只Wistar白化小鼠(每只动物20张)的320张高碘酸-希夫(PAS)染色肾髓质数字显微照片进行了分析。160张显微照片来自诱导再灌注损伤的实验组,另外160张来自对照组。对于每张显微照片,我们计算了分形维数、孔隙率的值,以及五个灰度共生矩阵特征:角二阶矩、熵、逆差矩、灰度共生矩阵对比度和灰度共生矩阵相关性。通过测量ROC曲线下的面积,使用受试者操作特征(ROC)分析测试了参数的判别值。结果表明,灰度共生矩阵算法的某些特征在评估受损肾组织方面具有出色的判别能力。分形维数和孔隙率作为分形分析的参数,在区分损伤组织和正常组织方面也具有相对较好的判别值。这两种方法在未来适用于细胞生理学、组织学和病理学的新技术设计中都具有潜在的应用前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验