Suppr超能文献

酰脲的早期信号传导、合成、运输及代谢

Early signaling, synthesis, transport and metabolism of ureides.

作者信息

Baral Bikash, Teixeira da Silva Jaime A, Izaguirre-Mayoral Maria Luisa

机构信息

Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, Latokartanonkaari 7, FIN-00014 Helsinki, Finland.

P.O. Box 7, Miki-cho Post Office, Ikenobe 3011-2, Kagawa-ken 761-0799, Japan.

出版信息

J Plant Physiol. 2016 Apr 1;193:97-109. doi: 10.1016/j.jplph.2016.01.013. Epub 2016 Feb 22.

Abstract

The symbiosis between α nitrogen (N2)-fixing Proteobacteria (family Rhizobiaceae) and legumes belonging to the Fabaceae (a single phylogenetic group comprising three subfamilies: Caesalpinioideae, Mimosoideae and Papilionoideae) results in the formation of a novel root structure called a nodule, where atmospheric N2 is fixed into NH3(+). In the determinate type of nodules harbored by Rhizobium-nodulated Fabaceae species, newly synthesized NH3(+) is finally converted into allantoin (C4H6N4O3) and allantoic acid (C4H8N4O4) (ureides) through complex pathways involving at least 20 different enzymes that act synchronously in two types of nodule cells with contrasting ultrastructure, including the tree nodule cell organelles. Newly synthesized ureides are loaded into the network of nodule-root xylem vessels and transported to aerial organs by the transpirational water current. Once inside the leaves, ureides undergo an enzymatically driven reverse process to yield NH4(+) that is used for growth. This supports the role of ureides as key nitrogen (N)-compounds for the growth and yield of legumes nodulated by Rhizobium that grow in soils with a low N content. Thus, a concrete understanding of the mechanisms underlying ureide biogenesis and catabolism in legumes may help agrobiologists to achieve greater agricultural discoveries. In this review we focus on the transmembranal and transorganellar symplastic and apoplastic movement of N-precursors within the nodules, as well as on the occurrence, localization and properties of enzymes and genes involved in the biogenesis and catabolism of ureides. The synthesis and transport of ureides are not unique events in Rhizobium-nodulated N2-fixing legumes. Thus, a brief description of the synthesis and catabolism of ureides in non-legumes was included for comparison. The establishment of the symbiosis, nodule organogenesis and the plant's control of nodule number, synthesis and translocation of ureides via feed-back inhibition mechanisms are also reviewed.

摘要

α固氮变形菌(根瘤菌科)与豆科植物(一个单一的系统发育类群,包括三个亚科:苏木亚科、含羞草亚科和蝶形花亚科)之间的共生关系导致形成一种名为根瘤的新型根结构,大气中的N₂在其中被固定为NH₃⁺。在根瘤菌结瘤的豆科植物所具有的定型根瘤类型中,新合成的NH₃⁺最终通过复杂途径转化为尿囊素(C₄H₆N₄O₃)和尿囊酸(C₄H₈N₄O₄)(酰脲),该途径涉及至少20种不同的酶,这些酶在具有不同超微结构的两种根瘤细胞中同步起作用,包括树状根瘤细胞器。新合成的酰脲被加载到根瘤 - 根木质部导管网络中,并通过蒸腾水流运输到地上器官。一旦进入叶片,酰脲会经历酶促驱动的逆向过程以产生用于生长的NH₄⁺。这支持了酰脲作为在低氮土壤中生长的根瘤菌结瘤豆科植物生长和产量关键氮化合物的作用。因此,具体了解豆科植物中酰脲生物合成和分解代谢的机制可能有助于农业生物学家取得更多农业方面的发现。在本综述中,我们关注根瘤内氮前体的跨膜和跨细胞器共质体及质外体移动,以及参与酰脲生物合成和分解代谢的酶和基因的存在、定位和特性。酰脲的合成和运输并非根瘤菌结瘤的固氮豆科植物所特有的事件。因此,还包括了非豆科植物中酰脲合成和分解代谢的简要描述以供比较。还综述了共生关系的建立、根瘤器官发生以及植物通过反馈抑制机制对根瘤数量、酰脲合成和转运的控制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验