Suppr超能文献

受富含金属的地下水影响的锰矿床中的生物低pH值锰(II)氧化作用

Biological Low-pH Mn(II) Oxidation in a Manganese Deposit Influenced by Metal-Rich Groundwater.

作者信息

Bohu Tsing, Akob Denise M, Abratis Michael, Lazar Cassandre S, Küsel Kirsten

机构信息

Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany.

U.S. Geological Survey, National Research Program, Reston, Virginia, USA.

出版信息

Appl Environ Microbiol. 2016 May 2;82(10):3009-3021. doi: 10.1128/AEM.03844-15. Print 2016 May 15.

Abstract

UNLABELLED

The mechanisms, key organisms, and geochemical significance of biological low-pH Mn(II) oxidation are largely unexplored. Here, we investigated the structure of indigenous Mn(II)-oxidizing microbial communities in a secondary subsurface Mn oxide deposit influenced by acidic (pH 4.8) metal-rich groundwater in a former uranium mining area. Microbial diversity was highest in the Mn deposit compared to the adjacent soil layers and included the majority of known Mn(II)-oxidizing bacteria (MOB) and two genera of known Mn(II)-oxidizing fungi (MOF). Electron X-ray microanalysis showed that romanechite [(Ba,H2O)2(Mn(4+),Mn(3+))5O10] was conspicuously enriched in the deposit. Canonical correspondence analysis revealed that certain fungal, bacterial, and archaeal groups were firmly associated with the autochthonous Mn oxides. Eight MOB within the Proteobacteria, Actinobacteria, and Bacteroidetes and one MOF strain belonging to Ascomycota were isolated at pH 5.5 or 7.2 from the acidic Mn deposit. Soil-groundwater microcosms demonstrated 2.5-fold-faster Mn(II) depletion in the Mn deposit than adjacent soil layers. No depletion was observed in the abiotic controls, suggesting that biological contribution is the main driver for Mn(II) oxidation at low pH. The composition and species specificity of the native low-pH Mn(II) oxidizers were highly adapted to in situ conditions, and these organisms may play a central role in the fundamental biogeochemical processes (e.g., metal natural attenuation) occurring in the acidic, oligotrophic, and metalliferous subsoil ecosystems.

IMPORTANCE

This study provides multiple lines of evidence to show that microbes are the main drivers of Mn(II) oxidation even at acidic pH, offering new insights into Mn biogeochemical cycling. A distinct, highly adapted microbial community inhabits acidic, oligotrophic Mn deposits and mediates biological Mn oxidation. These data highlight the importance of biological processes for Mn biogeochemical cycling and show the potential for new bioremediation strategies aimed at enhancing biological Mn oxidation in low-pH environments for contaminant mitigation.

摘要

未标记

生物性低pH值条件下锰(II)氧化的机制、关键生物及地球化学意义在很大程度上尚未得到探索。在此,我们研究了在一个前铀矿区受酸性(pH 4.8)富金属地下水影响的次生地下锰氧化物矿床中,原生锰(II)氧化微生物群落的结构。与相邻土壤层相比,锰矿床中的微生物多样性最高,包括大多数已知的锰(II)氧化细菌(MOB)和两个已知的锰(II)氧化真菌(MOF)属。电子X射线微分析表明,钠水锰矿[(Ba,H2O)2(Mn(4+),Mn(3+))5O10]在矿床中显著富集。典范对应分析表明,某些真菌、细菌和古菌类群与原生锰氧化物紧密相关。在pH 5.5或7.2条件下,从酸性锰矿床中分离出了变形菌门、放线菌门和拟杆菌门中的8种MOB以及一种属于子囊菌门的MOF菌株。土壤 - 地下水微观模型表明,锰矿床中锰(II)的消耗速度比相邻土壤层高2.5倍。在非生物对照中未观察到消耗现象,这表明生物作用是低pH值条件下锰(II)氧化的主要驱动力。原生低pH值锰(II)氧化剂的组成和物种特异性高度适应原位条件,这些生物可能在酸性、贫营养和含金属的底土生态系统中发生的基本生物地球化学过程(如金属自然衰减)中发挥核心作用。

重要性

本研究提供了多条证据表明,即使在酸性pH值条件下,微生物也是锰(II)氧化的主要驱动力,为锰生物地球化学循环提供了新的见解。一个独特的、高度适应环境的微生物群落栖息在酸性、贫营养的锰矿床中,并介导生物性锰氧化。这些数据突出了生物过程对锰生物地球化学循环的重要性,并展示了旨在增强低pH值环境中生物性锰氧化以减轻污染物的新生物修复策略的潜力。

相似文献

引用本文的文献

2
Forced Biomineralization: A Review.强制生物矿化:综述
Biomimetics (Basel). 2021 Jul 12;6(3):46. doi: 10.3390/biomimetics6030046.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验