Suppr超能文献

apt/6-甲基嘌呤反选择系统及其在嗜热古菌冰岛硫化叶菌遗传研究中的应用

The apt/6-Methylpurine Counterselection System and Its Applications in Genetic Studies of the Hyperthermophilic Archaeon Sulfolobus islandicus.

作者信息

Zhang Changyi, She Qunxin, Bi Hongkai, Whitaker Rachel J

机构信息

Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA

Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.

出版信息

Appl Environ Microbiol. 2016 May 2;82(10):3070-3081. doi: 10.1128/AEM.00455-16. Print 2016 May 15.

Abstract

UNLABELLED

Sulfolobus islandicus serves as a model for studying archaeal biology as well as linking novel biology to evolutionary ecology using functional population genomics. In the present study, we developed a new counterselectable genetic marker in S. islandicus to expand the genetic toolbox for this species. We show that resistance to the purine analog 6-methylpurine (6-MP) in S. islandicus M.16.4 is due to the inactivation of a putative adenine phosphoribosyltransferase encoded by M164_0158 (apt). The application of the apt gene as a novel counterselectable marker was first illustrated by constructing an unmarked α-amylase deletion mutant. Furthermore, the 6-MP counterselection feature was employed in a forward (loss-of-function) mutation assay to reveal the profile of spontaneous mutations in S. islandicus M.16.4 at the apt locus. Moreover, the general conservation of apt genes in the crenarchaea suggests that the same strategy can be broadly applied to other crenarchaeal model organisms. These results demonstrate that the apt locus represents a new tool for genetic manipulation and sequence analysis of the hyperthermophilic crenarchaeon S. islandicus

IMPORTANCE

Currently, the pyrEF/5-fluoroorotic acid (5-FOA) counterselection system remains the sole counterselection marker in crenarchaeal genetics. Since most Sulfolobus mutants constructed by the research community were derived from genetic hosts lacking the pyrEF genes, the pyrEF/5-FOA system is no longer available for use in forward mutation assays. Demonstration of the apt/6-MP counterselection system for the Sulfolobus model renders it possible to again study the mutation profiles in mutants that have already been constructed by the use of strains with a pyrEF-deficient background. Furthermore, additional counterselectable markers will allow us to conduct more sophisticated genetic studies, i.e., investigate mechanisms of chromosomal DNA transfer and quantify recombination frequencies among S. islandicus strains.

摘要

未标记

冰岛硫化叶菌是研究古菌生物学以及利用功能群体基因组学将新生物学与进化生态学联系起来的模型。在本研究中,我们在冰岛硫化叶菌中开发了一种新的可反向选择的遗传标记,以扩展该物种的遗传工具箱。我们表明,冰岛硫化叶菌M.16.4对嘌呤类似物6-甲基嘌呤(6-MP)的抗性是由于由M164_0158(apt)编码的推定腺嘌呤磷酸核糖转移酶失活所致。通过构建无标记的α-淀粉酶缺失突变体,首次说明了apt基因作为一种新型可反向选择标记的应用。此外,6-MP反向选择特性被用于正向(功能丧失)突变试验,以揭示冰岛硫化叶菌M.16.4在apt位点的自发突变谱。此外,嗜热栖热菌中apt基因的普遍保守性表明,相同的策略可广泛应用于其他嗜热栖热菌模式生物。这些结果表明,apt位点代表了一种用于嗜热栖热古菌冰岛硫化叶菌遗传操作和序列分析的新工具。

重要性

目前,pyrEF/5-氟乳清酸(5-FOA)反向选择系统仍然是嗜热栖热菌遗传学中唯一的反向选择标记。由于研究界构建的大多数硫化叶菌突变体都来自缺乏pyrEF基因的遗传宿主,因此pyrEF/5-FOA系统不再可用于正向突变试验。为硫化叶菌模型展示的apt/6-MP反向选择系统使得再次研究使用pyrEF缺陷背景菌株构建的突变体中的突变谱成为可能。此外,额外的可反向选择标记将使我们能够进行更复杂的遗传研究,即研究染色体DNA转移机制并量化冰岛硫化叶菌菌株之间的重组频率。

相似文献

1
The apt/6-Methylpurine Counterselection System and Its Applications in Genetic Studies of the Hyperthermophilic Archaeon Sulfolobus islandicus.
Appl Environ Microbiol. 2016 May 2;82(10):3070-3081. doi: 10.1128/AEM.00455-16. Print 2016 May 15.
2
Microhomology-Mediated High-Throughput Gene Inactivation Strategy for the Hyperthermophilic Crenarchaeon Sulfolobus islandicus.
Appl Environ Microbiol. 2017 Dec 15;84(1). doi: 10.1128/AEM.02167-17. Print 2018 Jan 1.
3
Unmarked gene deletion and host-vector system for the hyperthermophilic crenarchaeon Sulfolobus islandicus.
Extremophiles. 2009 Jul;13(4):735-46. doi: 10.1007/s00792-009-0254-2. Epub 2009 Jun 10.
4
Genetic analyses in the hyperthermophilic archaeon Sulfolobus islandicus.
Biochem Soc Trans. 2009 Feb;37(Pt 1):92-6. doi: 10.1042/BST0370092.
5
Development of a simvastatin selection marker for a hyperthermophilic acidophile, Sulfolobus islandicus.
Appl Environ Microbiol. 2012 Jan;78(2):568-74. doi: 10.1128/AEM.06095-11. Epub 2011 Nov 11.
6
Augmenting the genetic toolbox for Sulfolobus islandicus with a stringent positive selectable marker for agmatine prototrophy.
Appl Environ Microbiol. 2013 Sep;79(18):5539-49. doi: 10.1128/AEM.01608-13. Epub 2013 Jul 8.
7
A broadly applicable gene knockout system for the thermoacidophilic archaeon Sulfolobus islandicus based on simvastatin selection.
Microbiology (Reading). 2012 Jun;158(Pt 6):1513-1522. doi: 10.1099/mic.0.058289-0. Epub 2012 Mar 29.
8
Genetic manipulation in Sulfolobus islandicus and functional analysis of DNA repair genes.
Biochem Soc Trans. 2013 Feb 1;41(1):405-10. doi: 10.1042/BST20120285.
10
Recombination shapes the natural population structure of the hyperthermophilic archaeon Sulfolobus islandicus.
Mol Biol Evol. 2005 Dec;22(12):2354-61. doi: 10.1093/molbev/msi233. Epub 2005 Aug 10.

引用本文的文献

1
Archaeal replicative primase mediates DNA double-strand break repair.
Nucleic Acids Res. 2025 Apr 22;53(8). doi: 10.1093/nar/gkaf322.
2
Markerless mutagenesis enables isoleucine biosynthesis solely from threonine in .
Microbiol Spectr. 2025 Jun 3;13(6):e0306824. doi: 10.1128/spectrum.03068-24. Epub 2025 Apr 17.
3
Approaches to genetic tool development for rapid domestication of non-model microorganisms.
Biotechnol Biofuels. 2021 Jan 25;14(1):30. doi: 10.1186/s13068-020-01872-z.
4
The biology of thermoacidophilic archaea from the order Sulfolobales.
FEMS Microbiol Rev. 2021 Aug 17;45(4). doi: 10.1093/femsre/fuaa063.
5
A Unique B-Family DNA Polymerase Facilitating Error-Prone DNA Damage Tolerance in Crenarchaeota.
Front Microbiol. 2020 Jul 23;11:1585. doi: 10.3389/fmicb.2020.01585. eCollection 2020.
6
The essential genome of the crenarchaeal model Sulfolobus islandicus.
Nat Commun. 2018 Nov 21;9(1):4908. doi: 10.1038/s41467-018-07379-4.
9
- A Potential Key Organism in Future Biotechnology.
Front Microbiol. 2017 Dec 12;8:2474. doi: 10.3389/fmicb.2017.02474. eCollection 2017.
10
Development of the Multiple Gene Knockout System with One-Step PCR in Thermoacidophilic Crenarchaeon .
Archaea. 2017 Oct 31;2017:7459310. doi: 10.1155/2017/7459310. eCollection 2017.

本文引用的文献

1
Membrane Association and Catabolite Repression of the Sulfolobus solfataricus α-Amylase.
Microorganisms. 2015 Sep 18;3(3):567-87. doi: 10.3390/microorganisms3030567.
2
Harnessing Type I and Type III CRISPR-Cas systems for genome editing.
Nucleic Acids Res. 2016 Feb 29;44(4):e34. doi: 10.1093/nar/gkv1044. Epub 2015 Oct 13.
3
Membrane-bound amylopullulanase is essential for starch metabolism of Sulfolobus acidocaldarius DSM639.
Extremophiles. 2015 Sep;19(5):909-20. doi: 10.1007/s00792-015-0766-x. Epub 2015 Jun 24.
4
Chromosomal insertions in the Lactobacillus casei upp gene that are useful for vaccine expression.
Appl Environ Microbiol. 2014 Jun;80(11):3321-6. doi: 10.1128/AEM.00175-14. Epub 2014 Mar 21.
5
Recombination shapes genome architecture in an organism from the archaeal domain.
Genome Biol Evol. 2014 Jan;6(1):170-8. doi: 10.1093/gbe/evu003.
7
Genetic techniques for the archaea.
Annu Rev Genet. 2013;47:539-61. doi: 10.1146/annurev-genet-111212-133225. Epub 2013 Sep 18.
8
Augmenting the genetic toolbox for Sulfolobus islandicus with a stringent positive selectable marker for agmatine prototrophy.
Appl Environ Microbiol. 2013 Sep;79(18):5539-49. doi: 10.1128/AEM.01608-13. Epub 2013 Jul 8.
9
Genomics and genetics of Sulfolobus islandicus LAL14/1, a model hyperthermophilic archaeon.
Open Biol. 2013 Apr 17;3(4):130010. doi: 10.1098/rsob.130010.
10
Archaeal DNA polymerase D but not DNA polymerase B is required for genome replication in Thermococcus kodakarensis.
J Bacteriol. 2013 May;195(10):2322-8. doi: 10.1128/JB.02037-12. Epub 2013 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验