Suppr超能文献

利用I型和III型CRISPR-Cas系统进行基因组编辑。

Harnessing Type I and Type III CRISPR-Cas systems for genome editing.

作者信息

Li Yingjun, Pan Saifu, Zhang Yan, Ren Min, Feng Mingxia, Peng Nan, Chen Lanming, Liang Yun Xiang, She Qunxin

机构信息

State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.

Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture; College of Food Science and Technology, Shanghai Ocean University, 999 Hu Cheng Huan Road, Shanghai 201306, China.

出版信息

Nucleic Acids Res. 2016 Feb 29;44(4):e34. doi: 10.1093/nar/gkv1044. Epub 2015 Oct 13.

Abstract

CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are widespread in archaea and bacteria, and research on their molecular mechanisms has led to the development of genome-editing techniques based on a few Type II systems. However, there has not been any report on harnessing a Type I or Type III system for genome editing. Here, a method was developed to repurpose both CRISPR-Cas systems for genetic manipulation in Sulfolobus islandicus, a thermophilic archaeon. A novel type of genome-editing plasmid (pGE) was constructed, carrying an artificial mini-CRISPR array and a donor DNA containing a non-target sequence. Transformation of a pGE plasmid would yield two alternative fates to transformed cells: wild-type cells are to be targeted for chromosomal DNA degradation, leading to cell death, whereas those carrying the mutant gene would survive the cell killing and selectively retained as transformants. Using this strategy, different types of mutation were generated, including deletion, insertion and point mutations. We envision this method is readily applicable to different bacteria and archaea that carry an active CRISPR-Cas system of DNA interference provided the protospacer adjacent motif (PAM) of an uncharacterized PAM-dependent CRISPR-Cas system can be predicted by bioinformatic analysis.

摘要

CRISPR-Cas(成簇规律间隔短回文重复序列-相关蛋白)系统广泛存在于古菌和细菌中,对其分子机制的研究推动了基于少数II型系统的基因组编辑技术的发展。然而,尚未有关于利用I型或III型系统进行基因组编辑的报道。在此,开发了一种方法,可将两种CRISPR-Cas系统重新用于嗜热古菌冰岛硫化叶菌的基因操作。构建了一种新型的基因组编辑质粒(pGE),其携带人工微型CRISPR阵列和含有非靶序列的供体DNA。pGE质粒的转化会给转化细胞带来两种不同的结果:野生型细胞的染色体DNA将被靶向降解,导致细胞死亡,而携带突变基因的细胞则能在细胞杀伤中存活并作为转化体被选择性保留。利用这一策略,产生了不同类型的突变,包括缺失、插入和点突变。我们设想,只要通过生物信息学分析能够预测未表征的PAM依赖性CRISPR-Cas系统的原间隔序列临近基序(PAM),这种方法就很容易应用于携带活跃DNA干扰CRISPR-Cas系统的不同细菌和古菌。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/423a/4770200/af296f04f060/gkv1044fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验