Suppr超能文献

Hyperhomocysteinemia Alters Sinoatrial and Atrioventricular Nodal Function: Role of Magnesium in Attenuating These Effects.

作者信息

Soni Chirag V, Tyagi Suresh C, Todnem Nathan D, Givvimani Srikanth, Pushpakumar Sathnur B, Villafane Juan, Maldonado Claudio

机构信息

Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY, 40202, USA.

Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.

出版信息

Cell Biochem Biophys. 2016 Mar;74(1):59-65. doi: 10.1007/s12013-015-0711-8.

Abstract

Patients with hyperhomocysteinemia (HHcy), or elevated plasma homocysteine (Hcy), are at higher risk of developing arrhythmias and sudden cardiac death; however, the mechanisms are unknown. In this study, the effects of HHcy on sinus node function, atrioventricular conduction, and ventricular vulnerability were investigated by electrophysiological (EP) analysis, and the role of magnesium (Mg(2+)), an endogenous N-methyl-D-aspartate (NMDA) receptor antagonist, in attenuating EP changes due to HHcy was explored. Wild-type mice (WT) and mice receiving Hcy in the drinking water for 12 weeks (DW) were subjected to electrocardiographic and EP studies. DW compared to WT had significantly shorter RR, PR, QT, and HV intervals, corrected sinus node recovery times (CSNRT), Wenckebach periodicity (WP), atrioventricular nodal effective refractory periods (AVNERP), and right ventricular effective refractory periods (RVERP). To examine the role of Mg(2+) in mitigating conduction changes in HHcy, WT, DW, and heterozygous cystathionine-β-synthase knockout mice (CBS (+/-) ) were subjected to repeat EP studies before and after administration of low-dose magnesium sulfate (20 mg/kg). Mg(2+) had no effect on EP variables in WT, but significantly slowed CSNRT, WP, and AVNERP in DW, as well as WP and AVNERP in CBS (+/-) . These findings suggest that ionic channels modulated by Mg(2+) may contribute to HHcy-induced conduction abnormalities.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验