Suppr超能文献

应用经验模型预测混合碳酸盐-铝硅酸盐沉积物(亚得里亚海,克罗地亚)中的背景金属浓度。

Application of empirical model to predict background metal concentration in mixed carbonate-alumosilicate sediment (Adriatic Sea, Croatia).

机构信息

Faculty of Science, Department of Geology, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.

Faculty of Agriculture, Department of Soil Amelioration, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia.

出版信息

Mar Pollut Bull. 2016 May 15;106(1-2):190-9. doi: 10.1016/j.marpolbul.2016.02.070. Epub 2016 Mar 12.

Abstract

A 96m long sediment core (S10-33) from the Mali Ston Channel (Adriatic Sea) showed large natural variation in carbonate share (between 1% and 95%) and concentration of elements. These variations indicate rather significant changes in fine-grained sediment that was deposited in this area during Younger Pleistocene and Holocene. Unaffected by anthropogenic influence, sediment in the core was used to determine background concentration of trace elements in sediment with various carbonate content. Here we propose a method of the normalization of trace elements to carbonate share, in order to assess natural/background concentration of metals in sediments consisting of carbonates and alumosilicates in various proportions. Six characteristic metals (Co, Cr, Cu, Ni, Pb, and Zn) that were normalized to carbonate share showed very good correlation, with much higher background concentrations in alumosilicate than in carbonate end member. Simple formulas were proposed to easily determine background concentration of these elements, in coastal and shelf depositional environments with mixed carbonate-alumosilicate sediments.

摘要

马里斯顿海峡(亚得里亚海)的 96 米长沉积岩芯(S10-33)显示出碳酸盐含量(1%至 95%之间)和元素浓度的巨大自然变化。这些变化表明,在更新世晚期和全新世期间,在该地区沉积的细粒沉积物发生了相当大的变化。受人为影响较小的岩芯沉积物用于确定具有不同碳酸盐含量的沉积物中微量元素的背景浓度。在这里,我们提出了一种将微量元素归一化为碳酸盐含量的方法,以评估由碳酸盐和铝硅酸盐以不同比例组成的沉积物中金属的自然/背景浓度。归一化到碳酸盐含量的六种特征金属(Co、Cr、Cu、Ni、Pb 和 Zn)显示出非常好的相关性,在铝硅酸盐端元中的背景浓度远高于碳酸盐端元。提出了简单的公式,以便在具有混合碳酸盐-铝硅酸盐沉积物的沿海和陆架沉积环境中,轻松确定这些元素的背景浓度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验