Rodríguez-Banqueri Arturo, Errasti-Murugarren Ekaitz, Bartoccioni Paola, Kowalczyk Lukasz, Perálvarez-Marín Alex, Palacín Manuel, Vázquez-Ibar José Luis
Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.
Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain Spanish Biomedical Research Center in Rare Diseases (CIBERER), 08028 Barcelona, Spain.
J Gen Physiol. 2016 Apr;147(4):353-68. doi: 10.1085/jgp.201511510. Epub 2016 Mar 14.
The knowledge of three-dimensional structures at atomic resolution of membrane transport proteins has improved considerably our understanding of their physiological roles and pathological implications. However, most structural biology techniques require an optimal candidate within a protein family for structural determination with (a) reasonable production in heterologous hosts and (b) good stability in detergent micelles. SteT, the Bacillus subtilis L-serine/L-threonine exchanger is the best-known prokaryotic paradigm of the mammalian L-amino acid transporter (LAT) family. Unfortunately, SteT's lousy stability after extracting from the membrane prevents its structural characterization. Here, we have used an approach based on random mutagenesis to engineer stability in SteT. Using a split GFP complementation assay as reporter of protein expression and membrane insertion, we created a library of 70 SteT mutants each containing random replacements of one or two residues situated in the transmembrane domains. Analysis of expression and monodispersity in detergent of this library permitted the identification of evolved versions of SteT with a significant increase in both expression yield and stability in detergent with respect to wild type. In addition, these experiments revealed a correlation between the yield of expression and the stability in detergent micelles. Finally, and based on protein delipidation and relipidation assays together with transport experiments, possible mechanisms of SteT stabilization are discussed. Besides optimizing a member of the LAT family for structural determination, our work proposes a new approach that can be used to optimize any membrane protein of interest.
膜转运蛋白原子分辨率三维结构的知识极大地增进了我们对其生理作用和病理影响的理解。然而,大多数结构生物学技术需要在蛋白质家族中找到一个最佳候选者,以便通过以下条件进行结构测定:(a)在异源宿主中合理表达,以及(b)在去污剂胶束中具有良好的稳定性。枯草芽孢杆菌L-丝氨酸/L-苏氨酸交换蛋白SteT是哺乳动物L-氨基酸转运蛋白(LAT)家族中最著名的原核范例。不幸的是,从膜中提取后SteT的稳定性很差,这妨碍了对其进行结构表征。在这里,我们采用了一种基于随机诱变的方法来改造SteT的稳定性。使用分裂GFP互补测定作为蛋白质表达和膜插入的报告基因,我们创建了一个包含70个SteT突变体的文库,每个突变体都包含位于跨膜结构域的一个或两个残基的随机替换。对该文库在去污剂中的表达和单分散性分析,使得我们能够鉴定出SteT的进化版本,其表达产量和在去污剂中的稳定性相对于野生型都有显著提高。此外,这些实验揭示了表达产量与在去污剂胶束中的稳定性之间的相关性。最后,基于蛋白质脱脂和再脂化测定以及转运实验,讨论了SteT稳定化的可能机制。除了优化LAT家族的一个成员用于结构测定外,我们的工作还提出了一种可用于优化任何感兴趣的膜蛋白的新方法。