Ruppert Michael G, Moheimani S O Reza
School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW, 2308, Australia.
Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, U.S.A.
Beilstein J Nanotechnol. 2016 Feb 24;7:284-95. doi: 10.3762/bjnano.7.26. eCollection 2016.
Using standard microelectromechanical system (MEMS) processes to coat a microcantilever with a piezoelectric layer results in a versatile transducer with inherent self-sensing capabilities. For applications in multifrequency atomic force microscopy (MF-AFM), we illustrate that a single piezoelectric layer can be simultaneously used for multimode excitation and detection of the cantilever deflection. This is achieved by a charge sensor with a bandwidth of 10 MHz and dual feedthrough cancellation to recover the resonant modes that are heavily buried in feedthrough originating from the piezoelectric capacitance. The setup enables the omission of the commonly used piezoelectric stack actuator and optical beam deflection sensor, alleviating limitations due to distorted frequency responses and instrumentation cost, respectively. The proposed method benefits from a more than two orders of magnitude increase in deflection to strain sensitivity on the fifth eigenmode leading to a remarkable signal-to-noise ratio. Experimental results using bimodal AFM imaging on a two component polymer sample validate that the self-sensing scheme can therefore be used to provide both the feedback signal, for topography imaging on the fundamental mode, and phase imaging on the higher eigenmode.
使用标准微机电系统(MEMS)工艺在微悬臂梁上涂覆压电层,可得到一种具有固有自感应能力的多功能传感器。对于多频原子力显微镜(MF-AFM)中的应用,我们证明单个压电层可同时用于多模激励和悬臂梁挠度检测。这通过一个带宽为10 MHz的电荷传感器和双馈通消除来实现,以恢复深埋在源于压电电容的馈通中的共振模式。该设置能够省略常用的压电堆栈致动器和光束偏转传感器,分别缓解了由于频率响应失真和仪器成本带来的限制。所提出的方法在第五本征模式下的挠度应变灵敏度提高了两个多数量级,从而实现了显著的信噪比。在双组分聚合物样品上使用双峰AFM成像的实验结果验证了,这种自感应方案因此可用于提供反馈信号,用于基模下的形貌成像以及更高本征模式下的相位成像。