Ianutsevich Elena A, Danilova Olga A, Groza Natalia V, Kotlova Ekaterina R, Tereshina Vera M
Laboratory of Experimental Mycology, Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Building 2, Leninsky Avenue 33, Moscow 119071, Russian Federation.
Moscow State University of Fine Chemical Technologies named after M. V. Lomonosov, Moscow, Russian Federation.
Microbiology (Reading). 2016 Jun;162(6):989-999. doi: 10.1099/mic.0.000279. Epub 2016 Mar 15.
The heat shock (HS) response is an adaptation of organisms to elevated temperature. It includes substantial changes in the composition of cellular membranes, proteins and soluble carbohydrates. To protect the cellular macromolecules, thermophilic organisms have evolved mechanisms of persistent thermotolerance. Many of those mechanisms are common for thermotolerance and the HS response. However, it remains unknown whether thermophilic species respond to HS by further elevating concentrations of protective components. We investigated the composition of the soluble cytosol carbohydrates and membrane lipids of the thermophilic fungi Rhizomucor tauricus and Myceliophthora thermophilaat optimum temperature conditions (41-43 °С), and under HS (51-53 °С). At optimum temperatures, the membrane lipid composition was characterized by a high proportion of phosphatidic acids (PA) (20-35 % of the total), which were the main components of the membrane lipids, together with phosphatidylcholines (PC), phosphatidylethanolamines (PE) and sterols (St). In response to HS, the proportion of PA and St increased, and the amount of PC and PE decreased. No decrease in the degree of fatty acid desaturation in the major phospholipids under HS was detected. The mycelium of all fungi at optimum temperatures contained high levels of trehalose (8-10 %, w/w; 60-95 % of the total carbohydrates), which is a hallmark of thermophilia. In contrast to mesophilic fungi, heat exposure decreased the trehalose level and the fungi did not acquire thermotolerance to lethal HS, indicating that trehalose plays a key role in this process. This pattern of changes appears to be conserved in the studied filamentous thermophilic fungi.
热休克(HS)反应是生物体对温度升高的一种适应性反应。它包括细胞膜、蛋白质和可溶性碳水化合物组成的显著变化。为了保护细胞大分子,嗜热生物进化出了持续耐热性的机制。其中许多机制对于耐热性和热休克反应是共有的。然而,嗜热物种是否通过进一步提高保护成分的浓度来响应热休克仍不清楚。我们研究了嗜热真菌米根霉和嗜热毁丝霉在最适温度条件(41-43℃)和热休克(51-53℃)下可溶性胞质碳水化合物和膜脂的组成。在最适温度下,膜脂组成的特征是磷脂酸(PA)比例较高(占总量的20-35%),磷脂酸是膜脂的主要成分,与磷脂酰胆碱(PC)、磷脂酰乙醇胺(PE)和甾醇(St)一起。响应热休克时,PA和St的比例增加,PC和PE的量减少。未检测到热休克下主要磷脂中脂肪酸去饱和程度的降低。所有真菌在最适温度下的菌丝体都含有高水平的海藻糖(8-10%,w/w;占总碳水化合物的60-95%),这是嗜热性的一个标志。与嗜温真菌不同,热暴露降低了海藻糖水平,且真菌未获得对致死性热休克的耐热性,这表明海藻糖在这一过程中起关键作用。这种变化模式在研究的丝状嗜热真菌中似乎是保守的。