IEEE Trans Pattern Anal Mach Intell. 2017 Jan;39(1):172-188. doi: 10.1109/TPAMI.2016.2539944. Epub 2016 Mar 9.
An appearance model adaptable to changes in object appearance is critical in visual object tracking. In this paper, we treat an image patch as a two-order tensor which preserves the original image structure. We design two graphs for characterizing the intrinsic local geometrical structure of the tensor samples of the object and the background. Graph embedding is used to reduce the dimensions of the tensors while preserving the structure of the graphs. Then, a discriminant embedding space is constructed. We prove two propositions for finding the transformation matrices which are used to map the original tensor samples to the tensor-based graph embedding space. In order to encode more discriminant information in the embedding space, we propose a transfer-learning- based semi-supervised strategy to iteratively adjust the embedding space into which discriminative information obtained from earlier times is transferred. We apply the proposed semi-supervised tensor-based graph embedding learning algorithm to visual tracking. The new tracking algorithm captures an object's appearance characteristics during tracking and uses a particle filter to estimate the optimal object state. Experimental results on the CVPR 2013 benchmark dataset demonstrate the effectiveness of the proposed tracking algorithm.
在视觉目标跟踪中,能够适应目标外观变化的外观模型至关重要。在本文中,我们将图像补丁视为保留原始图像结构的二阶张量。我们设计了两个图来描述目标和背景的张量样本的内在局部几何结构。图嵌入用于在保持图结构的同时降低张量的维数。然后,构建一个判别嵌入空间。我们证明了两个命题,用于找到变换矩阵,将原始张量样本映射到基于张量的图嵌入空间。为了在嵌入空间中编码更多的判别信息,我们提出了一种基于迁移学习的半监督策略,以迭代地调整嵌入空间,将来自早期的判别信息转移到该空间中。我们将所提出的基于半监督张量的图嵌入学习算法应用于视觉跟踪。新的跟踪算法在跟踪过程中捕获目标的外观特征,并使用粒子滤波器估计目标的最优状态。在 CVPR 2013 基准数据集上的实验结果证明了所提出的跟踪算法的有效性。