IEEE J Biomed Health Inform. 2021 Sep;25(9):3517-3528. doi: 10.1109/JBHI.2021.3065050. Epub 2021 Sep 3.
Medical hyperspectral imagery has recentlyattracted considerable attention. However, for identification tasks, the high dimensionality of hyperspectral images usually leads to poor performance. Thus, dimensionality reduction (DR) is crucial in hyperspectral image analysis. Motivated by exploiting the underlying structure information of medical hyperspectral images and enhancing the discriminant ability of features, a discriminant tensor-based manifold embedding (DTME) is proposed for discriminant analysis of medical hyperspectral images. Based on the idea of manifold learning, a new discriminant similarity metric is designed, which takes into account the tensor representation, sparsity, low-rank and distribution characteristics. Then, an inter-class tensor graph and an intra-class tensor graph are constructed using the new similarity metric to reveal intrinsic manifold of hyperspectral data. Dimensionality reduction is achieved by embedding this supervised tensor graphs into the low-dimensional tensor subspace. Experimental results on membranous nephropathy and white bloodcells identification tasks demonstrate the potential clinical value of the proposed DTME.
医学高光谱图像最近引起了相当大的关注。然而,对于识别任务,高光谱图像的高维性通常会导致性能不佳。因此,降维(DR)在高光谱图像分析中至关重要。受挖掘医学高光谱图像潜在结构信息和增强特征判别能力的启发,提出了一种基于判别张量流形嵌入(DTME)的方法,用于医学高光谱图像的判别分析。基于流形学习的思想,设计了一种新的判别相似性度量,该度量考虑了张量表示、稀疏性、低秩和分布特征。然后,使用新的相似性度量构建了类间张量图和类内张量图,以揭示高光谱数据的内在流形。通过将这个有监督的张量图嵌入到低维张量子空间中,实现降维。在膜性肾病和白细胞识别任务上的实验结果表明了所提出的 DTME 的潜在临床价值。