Suppr超能文献

调节树突状细胞功能的肿瘤衍生因子。

Tumor-derived factors modulating dendritic cell function.

作者信息

Zong Jinbao, Keskinov Anton A, Shurin Galina V, Shurin Michael R

机构信息

Department of Pathology, University of Pittsburgh Medical Center, Scaife Hall S735, 3550 Terrace Street, Pittsburgh, PA, 15261, USA.

Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao City, China.

出版信息

Cancer Immunol Immunother. 2016 Jul;65(7):821-33. doi: 10.1007/s00262-016-1820-y. Epub 2016 Mar 16.

Abstract

Dendritic cells (DC) play unique and diverse roles in the tumor occurrence, development, progression and response to therapy. First of all, DC can actively uptake tumor-associated antigens, process them and present antigenic peptides to T cells inducing and maintaining tumor-specific T cell responses. DC interaction with different immune effector cells may also support innate antitumor immunity, as well as humoral responses also known to inhibit tumor development in certain cases. On the other hand, DC are recruited to the tumor site by specific tumor-derived and stroma-derived factors, which may also impair DC maturation, differentiation and function, thus resulting in the deficient formation of antitumor immune response or development of DC-mediated tolerance and immune suppression. Identification of DC-stimulating and DC-suppressing/polarizing factors in the tumor environment and the mechanism of DC modulation are important for designing effective DC-based vaccines and for recovery of immunodeficient resident DC responsible for maintenance of clinically relevant antitumor immunity in patients with cancer. DC-targeting tumor-derived factors and their effects on resident and administered DC in the tumor milieu are described and discussed in this review.

摘要

树突状细胞(DC)在肿瘤的发生、发展、进展及对治疗的反应中发挥着独特而多样的作用。首先,DC能够主动摄取肿瘤相关抗原,对其进行加工处理,并将抗原肽呈递给T细胞,从而诱导和维持肿瘤特异性T细胞反应。DC与不同免疫效应细胞的相互作用也可能支持先天性抗肿瘤免疫,而且在某些情况下,体液反应也已知可抑制肿瘤发展。另一方面,特定的肿瘤来源和基质来源因子会将DC募集至肿瘤部位,这也可能损害DC的成熟、分化及功能,进而导致抗肿瘤免疫反应形成不足,或引发DC介导的耐受和免疫抑制。识别肿瘤环境中刺激DC和抑制/极化DC的因子以及DC调节机制,对于设计有效的基于DC的疫苗以及恢复负责维持癌症患者临床相关抗肿瘤免疫的免疫缺陷驻留DC至关重要。本文综述描述并讨论了靶向DC的肿瘤来源因子及其对肿瘤微环境中驻留DC和给予的DC的影响。

相似文献

1
Tumor-derived factors modulating dendritic cell function.
Cancer Immunol Immunother. 2016 Jul;65(7):821-33. doi: 10.1007/s00262-016-1820-y. Epub 2016 Mar 16.
3
PSM Peptides Modulate Human Monocyte-Derived Dendritic Cells to Prime Regulatory T Cells.
Front Immunol. 2018 Nov 13;9:2603. doi: 10.3389/fimmu.2018.02603. eCollection 2018.
5
Dendritic cell dysfunction in cancer: a mechanism for immunosuppression.
Immunol Cell Biol. 2005 Oct;83(5):451-61. doi: 10.1111/j.1440-1711.2005.01371.x.
6
Tumor microenvironment-related dendritic cell deficiency: a target to enhance tumor immunotherapy.
Pharmacol Res. 2020 Sep;159:104980. doi: 10.1016/j.phrs.2020.104980. Epub 2020 Jun 3.
7
The use of dendritic cells for peptide-based vaccination in cancer immunotherapy.
Methods Mol Biol. 2014;1139:479-503. doi: 10.1007/978-1-4939-0345-0_37.
9
Dendritic cells from bench to bedside and back.
Immunol Lett. 2009 Feb 21;122(2):128-30. doi: 10.1016/j.imlet.2008.11.017. Epub 2008 Dec 31.

引用本文的文献

1
Refining Dendritic Cell-Based Cancer Vaccines: Subset Targeting, Translational Barriers, and Emerging Strategies.
J Microbiol Biotechnol. 2025 Aug 12;35:e2506021. doi: 10.4014/jmb.2506.06021.
2
Targeting myeloid cells to improve cancer immune therapy.
Front Immunol. 2025 Jul 31;16:1623436. doi: 10.3389/fimmu.2025.1623436. eCollection 2025.
3
GDF-15 upregulates the SLC7A11/GPX4 signaling axis and promotes mitoxantrone resistance in AML cells.
Eur J Med Res. 2025 Jun 21;30(1):504. doi: 10.1186/s40001-025-02787-x.
5
Cancer Nanovaccines: Mechanisms, Design Principles, and Clinical Translation.
ACS Nano. 2025 May 6;19(17):16204-16223. doi: 10.1021/acsnano.4c15765. Epub 2025 Apr 9.
10
SPathDB: a comprehensive database of spatial pathway activity atlas.
Nucleic Acids Res. 2025 Jan 6;53(D1):D1205-D1214. doi: 10.1093/nar/gkae1041.

本文引用的文献

1
Hypoxia-Driven Adenosine Accumulation: A Crucial Microenvironmental Factor Promoting Tumor Progression.
Adv Exp Med Biol. 2016;876:177-183. doi: 10.1007/978-1-4939-3023-4_22.
3
Immunogenic cell death.
Int J Dev Biol. 2015;59(1-3):131-40. doi: 10.1387/ijdb.150061pa.
4
Diagnostic significance of S100A2 and S100A6 levels in sera of patients with non-small cell lung cancer.
Tumour Biol. 2016 Feb;37(2):2299-304. doi: 10.1007/s13277-015-4057-z. Epub 2015 Sep 11.
6
Cervical (pre)neoplastic microenvironment promotes the emergence of tolerogenic dendritic cells via RANKL secretion.
Oncoimmunology. 2015 Mar 19;4(6):e1008334. doi: 10.1080/2162402X.2015.1008334. eCollection 2015 Jun.
7
The TGF-β superfamily in dendritic cell biology.
Cytokine Growth Factor Rev. 2015 Dec;26(6):647-57. doi: 10.1016/j.cytogfr.2015.06.002. Epub 2015 Jun 19.
8
Heat shock protein vaccines against glioblastoma: from bench to bedside.
J Neurooncol. 2015 Jul;123(3):441-8. doi: 10.1007/s11060-015-1837-7. Epub 2015 Jun 21.
9
ER Stress Sensor XBP1 Controls Anti-tumor Immunity by Disrupting Dendritic Cell Homeostasis.
Cell. 2015 Jun 18;161(7):1527-38. doi: 10.1016/j.cell.2015.05.025. Epub 2015 Jun 11.
10
Melanoma-derived factors alter the maturation and activation of differentiated tissue-resident dendritic cells.
Immunol Cell Biol. 2016 Jan;94(1):24-38. doi: 10.1038/icb.2015.58. Epub 2015 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验