文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在具有非单调或非随机缺失数据的队列研究中,基于反应性的多重填补和逆概率加权法

Responsiveness-informed multiple imputation and inverse probability-weighting in cohort studies with missing data that are non-monotone or not missing at random.

作者信息

Doidge James C

机构信息

Centre for Population Health Research, University of South Australia, Adelaide, Australia.

出版信息

Stat Methods Med Res. 2018 Feb;27(2):352-363. doi: 10.1177/0962280216628902. Epub 2016 Mar 16.


DOI:10.1177/0962280216628902
PMID:26984909
Abstract

Population-based cohort studies are invaluable to health research because of the breadth of data collection over time, and the representativeness of their samples. However, they are especially prone to missing data, which can compromise the validity of analyses when data are not missing at random. Having many waves of data collection presents opportunity for participants' responsiveness to be observed over time, which may be informative about missing data mechanisms and thus useful as an auxiliary variable. Modern approaches to handling missing data such as multiple imputation and maximum likelihood can be difficult to implement with the large numbers of auxiliary variables and large amounts of non-monotone missing data that occur in cohort studies. Inverse probability-weighting can be easier to implement but conventional wisdom has stated that it cannot be applied to non-monotone missing data. This paper describes two methods of applying inverse probability-weighting to non-monotone missing data, and explores the potential value of including measures of responsiveness in either inverse probability-weighting or multiple imputation. Simulation studies are used to compare methods and demonstrate that responsiveness in longitudinal studies can be used to mitigate bias induced by missing data, even when data are not missing at random.

摘要

基于人群的队列研究对健康研究非常重要,因为其随着时间推移收集的数据范围广泛,且样本具有代表性。然而,这类研究特别容易出现数据缺失的情况,当数据并非随机缺失时,可能会影响分析的有效性。多次进行数据收集为观察参与者随时间的反应性提供了机会,这可能有助于了解数据缺失机制,从而作为辅助变量发挥作用。在队列研究中,由于存在大量辅助变量和大量非单调缺失数据,诸如多重填补和最大似然法等现代处理缺失数据的方法可能难以实施。逆概率加权法可能更容易实施,但传统观点认为它不能应用于非单调缺失数据。本文描述了将逆概率加权法应用于非单调缺失数据的两种方法,并探讨了在逆概率加权法或多重填补中纳入反应性测量指标的潜在价值。通过模拟研究对这些方法进行比较,结果表明,即使数据并非随机缺失,纵向研究中的反应性也可用于减轻数据缺失导致的偏差。

相似文献

[1]
Responsiveness-informed multiple imputation and inverse probability-weighting in cohort studies with missing data that are non-monotone or not missing at random.

Stat Methods Med Res. 2018-2

[2]
Multiple imputation for non-monotone missing not at random data using the no self-censoring model.

Stat Methods Med Res. 2023-10

[3]
Comparison between inverse-probability weighting and multiple imputation in Cox model with missing failure subtype.

Stat Methods Med Res. 2024-2

[4]
Does pattern mixture modelling reduce bias due to informative attrition compared to fitting a mixed effects model to the available cases or data imputed using multiple imputation?: a simulation study.

BMC Med Res Methodol. 2018-8-29

[5]
Missing confounding data in marginal structural models: a comparison of inverse probability weighting and multiple imputation.

Int J Biostat. 2008

[6]
Longitudinal data analysis with non-ignorable missing data.

Stat Methods Med Res. 2016-2

[7]
Evaluation of multiple imputation approaches for handling missing covariate information in a case-cohort study with a binary outcome.

BMC Med Res Methodol. 2022-4-3

[8]
Attrition Bias Related to Missing Outcome Data: A Longitudinal Simulation Study.

Epidemiology. 2018-1

[9]
Propensity score analysis with partially observed covariates: How should multiple imputation be used?

Stat Methods Med Res. 2017-6-2

[10]
Multiple imputation methods for handling missing values in longitudinal studies with sampling weights: Comparison of methods implemented in Stata.

Biom J. 2021-2

引用本文的文献

[1]
Comparison of different approaches in handling missing data in longitudinal multiple-item patient-reported outcomes: a simulation study.

Health Qual Life Outcomes. 2025-4-5

[2]
Accounting for bias due to outcome data missing not at random: comparison and illustration of two approaches to probabilistic bias analysis: a simulation study.

BMC Med Res Methodol. 2024-11-13

[3]
Measurement error and misclassification in electronic medical records: methods to mitigate bias.

Curr Epidemiol Rep. 2018-12

[4]
Sexual Minority Women in Longitudinal Survey Research: Is Attrition a Problem?

Arch Sex Behav. 2020-4-8

[5]
Accounting for missing data in statistical analyses: multiple imputation is not always the answer.

Int J Epidemiol. 2019-8-1

[6]
Comparison of statistical approaches for analyzing incomplete longitudinal patient-reported outcome data in randomized controlled trials.

Patient Relat Outcome Meas. 2018-6-21

[7]
Risks for Mental Illness in Indigenous Australian Children: A Descriptive Study Demonstrating High Levels of Vulnerability.

Milbank Q. 2017-6

[8]
Predictors of Change in Physical Function in Older Adults in Response to Long-Term, Structured Physical Activity: The LIFE Study.

Arch Phys Med Rehabil. 2017-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索