Suppr超能文献

与对可用病例或使用多重插补法插补的数据拟合混合效应模型相比,模式混合建模是否会减少因信息性缺失而产生的偏差?一项模拟研究。

Does pattern mixture modelling reduce bias due to informative attrition compared to fitting a mixed effects model to the available cases or data imputed using multiple imputation?: a simulation study.

机构信息

Department of Epidemiology and Public Health, University College London, Gower Street, London, WC1E 7HB, UK.

INSERM U1018, Centre for Research in Epidemiology and Population Health, Düsternbrooker Weg, 20, Villejuif, France.

出版信息

BMC Med Res Methodol. 2018 Aug 29;18(1):89. doi: 10.1186/s12874-018-0548-0.

Abstract

BACKGROUND

Informative attrition occurs when the reason participants drop out from a study is associated with the study outcome. Analysing data with informative attrition can bias longitudinal study inferences. Approaches exist to reduce bias when analysing longitudinal data with monotone missingness (once participants drop out they do not return). However, findings may differ when using these approaches to analyse longitudinal data with non-monotone missingness.

METHODS

Different approaches to reduce bias due to informative attrition in non-monotone longitudinal data were compared. To achieve this aim, we simulated data from a Whitehall II cohort epidemiological study, which used the slope coefficients from a linear mixed effects model to investigate the association between smoking status at baseline and subsequent decline in cognition scores. Participants with lower cognitive scores were thought to be more likely to drop out. By using a simulation study, a range of scenarios using distributions of variables which exist in real data were compared. Informative attrition that would introduce a known bias to the simulated data was specified and the estimates from a mixed effects model with random intercept and slopes when fitted to: available cases; data imputed using multiple imputation (MI); imputed data adjusted using pattern mixture modelling (PMM) were compared. The two-fold fully conditional specification MI approach, previously validated for non-monotone longitudinal data under ignorable missing data assumption, was used. However, MI may not reduce bias because informative attrition is non-ignorable missing. Therefore, PMM was applied to reduce the bias, usually unknown, by adjusting the values imputed with MI by a fixed value equal to the introduced bias.

RESULTS

With highly correlated repeated outcome measures, the slope coefficients from a mixed effects model were found to have least bias when fitted to available cases. However, for moderately correlated outcome measurements, the slope coefficients from fitting a mixed effects model to data adjusted using PMM were least biased but still underestimated the true coefficients.

CONCLUSIONS

PMM may potentially reduce bias in studies analysing longitudinal data with suspected informative attrition and moderately correlated repeated outcome measurements. Including additional auxiliary variables in the imputation model may also reduce any remaining bias.

摘要

背景

当参与者退出研究的原因与研究结果相关时,就会出现信息性损耗。对存在信息性损耗的数据分析可能会使纵向研究的推论产生偏差。当分析具有单调缺失(一旦参与者退出,他们就不会再回来)的纵向数据时,存在减少偏差的方法。然而,当使用这些方法分析具有非单调缺失的纵向数据时,结果可能会有所不同。

方法

比较了减少非单调纵向数据中信息性损耗偏差的不同方法。为了实现这一目标,我们模拟了 Whitehall II 队列流行病学研究的数据,该研究使用线性混合效应模型的斜率系数来研究基线时的吸烟状况与随后认知评分下降之间的关联。我们认为认知评分较低的参与者更有可能退出研究。通过模拟研究,比较了使用真实数据中存在的变量分布的一系列场景。指定了会给模拟数据带来已知偏差的信息性损耗,并比较了在以下情况下拟合混合效应模型随机截距和斜率的估计值:可用案例;使用多重插补(MI)进行数据插补;使用模式混合建模(PMM)调整插补数据。以前在可忽略缺失数据假设下验证过适用于非单调纵向数据的两阶段完全条件指定 MI 方法被用于该研究。然而,由于信息性损耗是不可忽略的缺失,因此 MI 可能无法减少偏差。因此,PM M 用于通过用 MI 插补的值调整一个固定值来减少偏差,该固定值等于引入的偏差。

结果

对于高度相关的重复结果测量,在拟合可用案例时,混合效应模型的斜率系数偏差最小。然而,对于中度相关的结果测量,拟合使用 PMM 调整数据的混合效应模型的斜率系数偏差最小,但仍低估了真实系数。

结论

PMM 可能有助于减少分析具有可疑信息性损耗和中度相关重复结果测量的纵向数据研究中的偏差。在插补模型中包含更多辅助变量也可能会减少任何剩余的偏差。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验