Davtyan Aram, Platkov Max, Gruebele Martin, Papoian Garegin A
Department of Chemistry and Institute for Biophysical Dynamics, Computation Institute, James Franck Institute, University of Chicago, Chicago, Illinois, 60637, USA.
Department of Physics, Ariel University, Ariel, 40770, Israel.
Chemphyschem. 2016 May 4;17(9):1305-13. doi: 10.1002/cphc.201501125. Epub 2016 Apr 28.
Although protein folding reactions are usually studied under static external conditions, it is likely that proteins fold in a locally fluctuating cellular environment in vivo. To mimic such behavior in in vitro experiments, the local temperature of the solvent can be modulated either harmonically or using correlated noise. In this study, coarse-grained molecular simulations are used to investigate these possibilities, and it is found that both periodic and correlated random fluctuations of the environment can indeed accelerate folding kinetics if the characteristic frequencies of the applied fluctuations are commensurate with the internal timescale of the folding reaction; this is consistent with the phenomenon of stochastic resonance observed in many other condensed-matter processes. To test this theoretical prediction, the folding dynamics of phosphoglycerate kinase under harmonic temperature fluctuations are experimentally probed using Förster resonance energy transfer fluorescence measurements. To analyze these experiments, a combination of theoretical approaches is developed, including stochastic simulations of folding kinetics and an analytical mean-field kinetic theory. The experimental observations are consistent with the theoretical predictions of stochastic resonance in phosphoglycerate kinase folding. When combined with an alternative experiment on the protein VlsE using a power spectrum analysis, elaborated in Dave et al., ChemPhysChem 2016, 10.1002/cphc.201501041, the overall data overwhelmingly point to the experimental confirmation of stochastic resonance in protein folding dynamics.
尽管蛋白质折叠反应通常是在静态外部条件下进行研究的,但蛋白质在体内局部波动的细胞环境中折叠的可能性很大。为了在体外实验中模拟这种行为,可以通过谐波或使用相关噪声来调节溶剂的局部温度。在本研究中,使用粗粒度分子模拟来研究这些可能性,结果发现,如果所施加波动的特征频率与折叠反应的内部时间尺度相称,那么环境的周期性和相关随机波动确实可以加速折叠动力学;这与在许多其他凝聚态过程中观察到的随机共振现象是一致的。为了验证这一理论预测,利用福斯特共振能量转移荧光测量实验探测了磷酸甘油酸激酶在谐波温度波动下的折叠动力学。为了分析这些实验,开发了一套理论方法的组合,包括折叠动力学的随机模拟和解析平均场动力学理论。实验观察结果与磷酸甘油酸激酶折叠中随机共振的理论预测一致。当与Dave等人在《化学物理化学》2016年(doi:10.1002/cphc.201501041)中阐述的使用功率谱分析对蛋白质VlsE进行的另一项实验相结合时,整体数据压倒性地指向了蛋白质折叠动力学中随机共振的实验证实。