Suppr超能文献

视网膜裂隙灯视频拼接

Retinal slit lamp video mosaicking.

作者信息

De Zanet Sandro, Rudolph Tobias, Richa Rogerio, Tappeiner Christoph, Sznitman Raphael

机构信息

ARTORG Research Center Biomedical Engineering Research, University of Bern, Murtenstrasse 50, 3008, Bern, Switzerland.

Seecrypt, Witch-Hazel Ave, Centurion, 0169, South Africa.

出版信息

Int J Comput Assist Radiol Surg. 2016 Jun;11(6):1035-41. doi: 10.1007/s11548-016-1377-4. Epub 2016 Mar 19.

Abstract

PURPOSE

To this day, the slit lamp remains the first tool used by an ophthalmologist to examine patient eyes. Imaging of the retina poses, however, a variety of problems, namely a shallow depth of focus, reflections from the optical system, a small field of view and non-uniform illumination. For ophthalmologists, the use of slit lamp images for documentation and analysis purposes, however, remains extremely challenging due to large image artifacts. For this reason, we propose an automatic retinal slit lamp video mosaicking, which enlarges the field of view and reduces amount of noise and reflections, thus enhancing image quality.

METHODS

Our method is composed of three parts: (i) viable content segmentation, (ii) global registration and (iii) image blending. Frame content is segmented using gradient boosting with custom pixel-wise features. Speeded-up robust features are used for finding pair-wise translations between frames with robust random sample consensus estimation and graph-based simultaneous localization and mapping for global bundle adjustment. Foreground-aware blending based on feathering merges video frames into comprehensive mosaics.

RESULTS

Foreground is segmented successfully with an area under the curve of the receiver operating characteristic curve of 0.9557. Mosaicking results and state-of-the-art methods were compared and rated by ophthalmologists showing a strong preference for a large field of view provided by our method.

CONCLUSIONS

The proposed method for global registration of retinal slit lamp images of the retina into comprehensive mosaics improves over state-of-the-art methods and is preferred qualitatively.

摘要

目的

时至今日,裂隙灯仍是眼科医生检查患者眼睛时使用的首要工具。然而,视网膜成像存在各种问题,即焦深浅、光学系统反射、视野小以及照明不均匀。然而,对于眼科医生而言,由于存在大量图像伪影,使用裂隙灯图像进行记录和分析极具挑战性。因此,我们提出一种自动视网膜裂隙灯视频拼接方法,该方法可扩大视野并减少噪声和反射量,从而提高图像质量。

方法

我们的方法由三部分组成:(i)可行内容分割,(ii)全局配准,(iii)图像融合。使用带有自定义逐像素特征的梯度提升对帧内容进行分割。加速鲁棒特征用于通过鲁棒随机抽样一致性估计找到帧之间的成对平移,并使用基于图的同时定位与地图构建进行全局束调整。基于羽化的前景感知融合将视频帧合并为完整的拼接图。

结果

前景分割成功,接收器操作特征曲线下面积为0.9557。眼科医生对拼接结果和现有方法进行了比较和评级,结果显示他们强烈倾向于我们的方法所提供的大视野。

结论

所提出的将视网膜裂隙灯图像全局配准为完整拼接图的方法优于现有方法,并且在质量上更受青睐。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d90/4893377/712f7139927f/11548_2016_1377_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验