Suppr超能文献

胶质瘤中的恶性细胞网络:潜在的临床意义。

A malignant cellular network in gliomas: potential clinical implications.

作者信息

Osswald Matthias, Solecki Gergely, Wick Wolfgang, Winkler Frank

机构信息

Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany (M.O., G.S., W.W., F.W.); Clinical Cooperation Unit Neuro-oncology, German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany (M.O., G.S., W.W., F.W.).

出版信息

Neuro Oncol. 2016 Apr;18(4):479-85. doi: 10.1093/neuonc/now014.

Abstract

The recent discovery of distinct, ultra-long, and highly functional membrane protrusions in gliomas, particularly in astrocytomas, extends our understanding of how these tumors progress in the brain and how they resist therapies. In this article, we will focus on ideas on how to target these membrane protrusions, for which we have suggested the term "tumor microtubes" (TMs), and the malignant multicellular network they form. First, we discuss TM-specific features and their differential biological functions known so far. Second, the connection between 1p/19q codeletion and the inability to form functional TMs via certain neurodevelopmental pathways is presented; this could provide an explanation for the distinct clinical features of oligodendrogliomas. Third, the role of TMs for primary and potentially also adaptive resistance to cytotoxic therapies is highlighted. Fourth, avenues for therapeutic approaches to inhibit TM formation and/or function are discussed, with a focus on disruption (or exploitation) of network functionality. Finally, we propose ideas on how to use TMs as a biomarker in glioma patients. An increasing understanding of TMs in clinical and preclinical settings will show us whether they really are a long-sought-after Achilles' heel of treatment-resistant gliomas.

摘要

最近在胶质瘤,尤其是星形细胞瘤中发现了独特的、超长且具有高度功能的膜突出物,这扩展了我们对这些肿瘤在大脑中如何进展以及如何抵抗治疗的理解。在本文中,我们将重点探讨如何靶向这些膜突出物(我们已建议将其称为“肿瘤微管”(TMs))以及它们形成的恶性多细胞网络。首先,我们讨论TMs的特异性特征及其目前已知的不同生物学功能。其次,介绍了1p/19q共缺失与无法通过某些神经发育途径形成功能性TMs之间的联系;这可以解释少突胶质细胞瘤独特的临床特征。第三,强调了TMs对细胞毒性治疗的原发性以及潜在的适应性耐药的作用。第四,讨论了抑制TMs形成和/或功能的治疗方法途径,重点是破坏(或利用)网络功能。最后,我们提出了关于如何将TMs用作胶质瘤患者生物标志物的想法。对临床和临床前环境中TMs的日益了解将向我们表明,它们是否真的是难治性胶质瘤长期以来一直寻找的致命弱点。

相似文献

1
A malignant cellular network in gliomas: potential clinical implications.
Neuro Oncol. 2016 Apr;18(4):479-85. doi: 10.1093/neuonc/now014.
2
Tweety-Homolog 1 Drives Brain Colonization of Gliomas.
J Neurosci. 2017 Jul 19;37(29):6837-6850. doi: 10.1523/JNEUROSCI.3532-16.2017. Epub 2017 Jun 12.
5
[Histological and molecular classification of gliomas].
Rev Neurol (Paris). 2008 Jun-Jul;164(6-7):505-15. doi: 10.1016/j.neurol.2008.03.011. Epub 2008 Jun 10.
6
p-CREB expression in human gliomas: potential use in the differential diagnosis between astrocytoma and oligodendroglioma.
Hum Pathol. 2015 Feb;46(2):231-8. doi: 10.1016/j.humpath.2014.10.011. Epub 2014 Nov 4.
7
Nogo-A: a useful marker for the diagnosis of oligodendroglioma and for identifying 1p19q codeletion.
Hum Pathol. 2012 Mar;43(3):374-80. doi: 10.1016/j.humpath.2011.05.007. Epub 2011 Aug 10.
8
Molecular pathways in the formation of gliomas.
Glia. 1995 Nov;15(3):328-38. doi: 10.1002/glia.440150312.
9
10
Glioma biology and molecular markers.
Cancer Treat Res. 2015;163:15-30. doi: 10.1007/978-3-319-12048-5_2.

引用本文的文献

1
Innovative Therapeutic Strategies Targeting the Network Architecture of Glioblastoma.
Clin Cancer Res. 2025 Jul 15;31(14):2864-2871. doi: 10.1158/1078-0432.CCR-25-0018.
2
Morphoregulatory ADD3 underlies glioblastoma growth and formation of tumor-tumor connections.
Life Sci Alliance. 2024 Nov 26;8(2). doi: 10.26508/lsa.202402823. Print 2025 Feb.
3
Tunneling Nanotubes: Implications for Chemoresistance.
Results Probl Cell Differ. 2024;73:353-373. doi: 10.1007/978-3-031-62036-2_15.
4
Disrupting glioblastoma networks with tumor treating fields (TTFields) in in vitro models.
J Neurooncol. 2024 Oct;170(1):139-151. doi: 10.1007/s11060-024-04786-0. Epub 2024 Aug 1.
5
Potential Mechanism and Involvement of p120-Catenin in the Malignant Biology of Glioma.
J Korean Neurosurg Soc. 2024 Nov;67(6):609-621. doi: 10.3340/jkns.2024.0053. Epub 2024 Jul 3.
6
The Alcatraz-Strategy: a roadmap to break the connectivity barrier in malignant brain tumours.
Mol Oncol. 2024 Dec;18(12):2890-2905. doi: 10.1002/1878-0261.13642. Epub 2024 Apr 3.
7
Diversity of Intercellular Communication Modes: A Cancer Biology Perspective.
Cells. 2024 Mar 12;13(6):495. doi: 10.3390/cells13060495.
8
Integrating and optimizing tonabersat in standard glioblastoma therapy: A preclinical study.
PLoS One. 2024 Mar 15;19(3):e0300552. doi: 10.1371/journal.pone.0300552. eCollection 2024.

本文引用的文献

1
Connexin 43 Inhibition Sensitizes Chemoresistant Glioblastoma Cells to Temozolomide.
Cancer Res. 2016 Jan 1;76(1):139-49. doi: 10.1158/0008-5472.CAN-15-1286. Epub 2015 Nov 5.
2
Brain tumour cells interconnect to a functional and resistant network.
Nature. 2015 Dec 3;528(7580):93-8. doi: 10.1038/nature16071. Epub 2015 Nov 4.
3
Brain cancer: Tumour cells on neighbourhood watch.
Nature. 2015 Dec 3;528(7580):49-50. doi: 10.1038/nature15649. Epub 2015 Nov 4.
4
Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth.
Nature. 2015 Nov 5;527(7576):100-104. doi: 10.1038/nature15376. Epub 2015 Oct 19.
5
Nanotubes mediate niche-stem-cell signalling in the Drosophila testis.
Nature. 2015 Jul 16;523(7560):329-32. doi: 10.1038/nature14602. Epub 2015 Jul 1.
6
Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors.
N Engl J Med. 2015 Jun 25;372(26):2499-508. doi: 10.1056/NEJMoa1407279. Epub 2015 Jun 10.
7
Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas.
N Engl J Med. 2015 Jun 25;372(26):2481-98. doi: 10.1056/NEJMoa1402121. Epub 2015 Jun 10.
8
Differential connexin function enhances self-renewal in glioblastoma.
Cell Rep. 2015 May 19;11(7):1031-42. doi: 10.1016/j.celrep.2015.04.021. Epub 2015 May 7.
9
Oligodendroglioma: pathology, molecular mechanisms and markers.
Acta Neuropathol. 2015 Jun;129(6):809-27. doi: 10.1007/s00401-015-1424-1. Epub 2015 May 6.
10
Gap Junctions Enhance the Antiproliferative Effect of MicroRNA-124-3p in Glioblastoma Cells.
J Cell Physiol. 2015 Oct;230(10):2476-88. doi: 10.1002/jcp.24982.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验