Suppr超能文献

特邀综述:GTP对G蛋白的激活作用及Gα催化GTP水解的机制

Invited review: Activation of G proteins by GTP and the mechanism of Gα-catalyzed GTP hydrolysis.

作者信息

Sprang Stephen R

机构信息

Center for Biomolecular Structure and Dynamics and Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT, 59812.

出版信息

Biopolymers. 2016 Aug;105(8):449-62. doi: 10.1002/bip.22836.

Abstract

This review addresses the regulatory consequences of the binding of GTP to the alpha subunits (Gα) of heterotrimeric G proteins, the reaction mechanism of GTP hydrolysis catalyzed by Gα and the means by which GTPase activating proteins (GAPs) stimulate the GTPase activity of Gα. The high energy of GTP binding is used to restrain and stabilize the conformation of the Gα switch segments, particularly switch II, to afford stable complementary to the surfaces of Gα effectors, while excluding interaction with Gβγ, the regulatory binding partner of GDP-bound Gα. Upon GTP hydrolysis, the energy of these conformational restraints is dissipated and the two switch segments, particularly switch II, become flexible and are able to adopt a conformation suitable for tight binding to Gβγ. Catalytic site pre-organization presents a significant activation energy barrier to Gα GTPase activity. The glutamine residue near the N-terminus of switch II (Glncat ) must adopt a conformation in which it orients and stabilizes the γ phosphate and the water nucleophile for an in-line attack. The transition state is probably loose with dissociative character; phosphoryl transfer may be concerted. The catalytic arginine in switch I (Argcat ), together with amide hydrogen bonds from the phosphate binding loop, stabilize charge at the β-γ bridge oxygen of the leaving group. GAPs that harbor "regulator of protein signaling" (RGS) domains, or structurally unrelated domains within G protein effectors that function as GAPs, accelerate catalysis by stabilizing the pre-transition state for Gα-catalyzed GTP hydrolysis, primarily by restraining Argcat and Glncat to their catalytic conformations. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 449-462, 2016.

摘要

本综述探讨了GTP与异源三聚体G蛋白的α亚基(Gα)结合的调控后果、Gα催化GTP水解的反应机制以及GTP酶激活蛋白(GAPs)刺激Gα的GTP酶活性的方式。GTP结合的高能量用于限制和稳定Gα开关片段的构象,特别是开关II,以提供与Gα效应器表面的稳定互补,同时排除与GDP结合的Gα的调节结合伙伴Gβγ的相互作用。GTP水解后,这些构象限制的能量消散,两个开关片段,特别是开关II,变得灵活,能够采用适合与Gβγ紧密结合的构象。催化位点的预组织对Gα GTP酶活性构成了显著的活化能障碍。开关II N端附近的谷氨酰胺残基(Glncat)必须采用一种构象,在其中它定向并稳定γ磷酸和水亲核试剂以进行直线攻击。过渡态可能是松散的,具有解离特征;磷酰基转移可能是协同的。开关I中的催化精氨酸(Argcat)与来自磷酸结合环的酰胺氢键一起,稳定离去基团β-γ桥氧处的电荷。具有“蛋白质信号调节”(RGS)结构域的GAPs,或在G蛋白效应器中起GAP作用的结构无关结构域,主要通过将Argcat和Glncat限制在其催化构象来稳定Gα催化的GTP水解的预过渡态,从而加速催化作用。©2016威利期刊公司。生物聚合物105:449 - 462,2016。

相似文献

2
Gbetagamma inhibits Galpha GTPase-activating proteins by inhibition of Galpha-GTP binding during stimulation by receptor.
J Biol Chem. 2006 Feb 24;281(8):4746-53. doi: 10.1074/jbc.M510573200. Epub 2005 Dec 29.
3
Structural basis of effector regulation and signal termination in heterotrimeric Galpha proteins.
Adv Protein Chem. 2007;74:1-65. doi: 10.1016/S0065-3233(07)74001-9.
6
Distinct roles for two Galpha-Gbeta interfaces in cell polarity control by a yeast heterotrimeric G protein.
Mol Biol Cell. 2008 Jan;19(1):181-97. doi: 10.1091/mbc.e07-04-0385. Epub 2007 Oct 31.
7
The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits.
Int J Biol Sci. 2005;1(2):51-66. doi: 10.7150/ijbs.1.51. Epub 2005 Apr 1.
8
Evidence for a second, high affinity Gbetagamma binding site on Galphai1(GDP) subunits.
J Biol Chem. 2009 Jun 19;284(25):16906-16913. doi: 10.1074/jbc.M109.006585. Epub 2009 Apr 15.
10

引用本文的文献

2
G Protein Selectivity in Dopamine Receptors is Determined before GDP Release.
Biochemistry. 2025 Jun 3;64(11):2439-2454. doi: 10.1021/acs.biochem.4c00779. Epub 2025 May 13.
3
Cyclic peptide inhibitors function as molecular glues to stabilize Gq/11 heterotrimers.
Proc Natl Acad Sci U S A. 2025 May 13;122(19):e2418398122. doi: 10.1073/pnas.2418398122. Epub 2025 May 7.
6
The G protein inhibitor YM-254890 is an allosteric glue.
bioRxiv. 2024 Nov 28:2024.11.25.625299. doi: 10.1101/2024.11.25.625299.
7
A Phenotypic High-Throughput Screen Identifies Small Molecule Modulators of Endogenous RGS10 in BV-2 Cells.
J Med Chem. 2024 Nov 28;67(22):20343-20352. doi: 10.1021/acs.jmedchem.4c01738. Epub 2024 Nov 15.
8
Receptor-dependent influence of R7 RGS proteins on neuronal GIRK channel signaling dynamics.
Prog Neurobiol. 2024 Dec;243:102686. doi: 10.1016/j.pneurobio.2024.102686. Epub 2024 Nov 13.
9
VPS26 Moonlights as a β-Arrestin-like Adapter for a 7-Transmembrane RGS Protein in .
Biochemistry. 2024 Nov 19;63(22):2990-2999. doi: 10.1021/acs.biochem.4c00361. Epub 2024 Oct 28.
10
Germline mutations in a G protein identify signaling cross-talk in T cells.
Science. 2024 Sep 20;385(6715):eadd8947. doi: 10.1126/science.add8947.

本文引用的文献

1
Probing Gαi1 protein activation at single-amino acid resolution.
Nat Struct Mol Biol. 2015 Sep;22(9):686-694. doi: 10.1038/nsmb.3070. Epub 2015 Aug 10.
2
Universal allosteric mechanism for Gα activation by GPCRs.
Nature. 2015 Aug 13;524(7564):173-179. doi: 10.1038/nature14663. Epub 2015 Jul 6.
3
Introduction: G Protein-coupled Receptors and RGS Proteins.
Prog Mol Biol Transl Sci. 2015;133:1-11. doi: 10.1016/bs.pmbts.2015.03.002. Epub 2015 Apr 8.
4
SIGNAL TRANSDUCTION. Structural basis for nucleotide exchange in heterotrimeric G proteins.
Science. 2015 Jun 19;348(6241):1361-5. doi: 10.1126/science.aaa5264.
5
The guanine nucleotide exchange factor Ric-8A induces domain separation and Ras domain plasticity in Gαi1.
Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):1404-9. doi: 10.1073/pnas.1423878112. Epub 2015 Jan 20.
6
A conserved phenylalanine as a relay between the α5 helix and the GDP binding region of heterotrimeric Gi protein α subunit.
J Biol Chem. 2014 Aug 29;289(35):24475-87. doi: 10.1074/jbc.M114.572875. Epub 2014 Jul 18.
7
The role of protein dynamics in GPCR function: insights from the β2AR and rhodopsin.
Curr Opin Cell Biol. 2014 Apr;27:136-43. doi: 10.1016/j.ceb.2014.01.008. Epub 2014 Feb 17.
8
Energetic analysis of the rhodopsin-G-protein complex links the α5 helix to GDP release.
Nat Struct Mol Biol. 2014 Jan;21(1):56-63. doi: 10.1038/nsmb.2705. Epub 2013 Dec 1.
9
Quantitative exploration of the molecular origin of the activation of GTPase.
Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20509-14. doi: 10.1073/pnas.1319854110. Epub 2013 Nov 26.
10
The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer.
Nat Rev Cancer. 2013 Jun;13(6):412-24. doi: 10.1038/nrc3521. Epub 2013 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验