Strickfaden Shelly C, Pryciak Peter M
Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
Mol Biol Cell. 2008 Jan;19(1):181-97. doi: 10.1091/mbc.e07-04-0385. Epub 2007 Oct 31.
Saccharomyces cerevisiae mating pheromones trigger dissociation of a heterotrimeric G protein (Galphabetagamma) into Galpha-guanosine triphosphate (GTP) and Gbetagamma. The Gbetagamma dimer regulates both mitogen-activated protein (MAP) kinase cascade signaling and cell polarization. Here, by independently activating the MAP kinase pathway, we studied the polarity role of Gbetagamma in isolation from its signaling role. MAP kinase signaling alone could induce cell asymmetry but not directional growth. Surprisingly, active Gbetagamma, either alone or with Galpha-GTP, could not organize a persistent polarization axis. Instead, following pheromone gradients (chemotropism) or directional growth without pheromone gradients (de novo polarization) required an intact receptor-Galphabetagamma module and GTP hydrolysis by Galpha. Our results indicate that chemoattractant-induced cell polarization requires continuous receptor-Galphabetagamma communication but not modulation of MAP kinase signaling. To explore regulation of Gbetagamma by Galpha, we mutated Gbeta residues in two structurally distinct Galpha-Gbeta binding interfaces. Polarity control was disrupted only by mutations in the N-terminal interface, and not the Switch interface. Incorporation of these mutations into a Gbeta-Galpha fusion protein, which enforces subunit proximity, revealed that Switch interface dissociation regulates signaling, whereas the N-terminal interface may govern receptor-Galphabetagamma coupling. These findings raise the possibility that the Galphabetagamma heterotrimer can function in a partially dissociated state, tethered by the N-terminal interface.
酿酒酵母交配信息素会引发异源三聚体G蛋白(Gαβγ)解离为Gα-鸟苷三磷酸(GTP)和Gβγ。Gβγ二聚体既调节丝裂原活化蛋白(MAP)激酶级联信号传导,也调节细胞极化。在此,通过独立激活MAP激酶途径,我们研究了Gβγ在与其信号传导作用相分离情况下的极化作用。单独的MAP激酶信号传导可诱导细胞不对称,但不能诱导定向生长。令人惊讶的是,活性Gβγ单独或与Gα-GTP一起都无法组织起持久的极化轴。相反,追踪信息素梯度(化学趋向性)或在无信息素梯度情况下的定向生长(从头极化)需要完整的受体-Gαβγ模块以及Gα介导的GTP水解。我们的结果表明,趋化因子诱导的细胞极化需要持续的受体-Gαβγ通讯,但不需要对MAP激酶信号传导进行调节。为了探究Gα对Gβγ的调节作用,我们在两个结构不同的Gα-Gβ结合界面处对Gβ残基进行了突变。只有N端界面的突变破坏了极性控制,而开关界面的突变则没有。将这些突变引入强制亚基靠近的Gβ-Gα融合蛋白中,结果表明开关界面解离调节信号传导,而N端界面可能控制受体-Gαβγ偶联。这些发现增加了这样一种可能性,即Gαβγ异源三聚体可以以部分解离的状态发挥作用,通过N端界面连接在一起。