Eichner Timo, Kutter Steffen, Labeikovsky Wladimir, Buosi Vanessa, Kern Dorothee
Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, 02454, MA, USA.
Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, 02454, MA, USA.
J Mol Biol. 2016 May 8;428(9 Pt A):1760-75. doi: 10.1016/j.jmb.2016.03.009. Epub 2016 Mar 17.
Human peptidyl-prolyl isomerase (PPIase) Pin1 plays key roles in developmental processes, cell proliferation, and neuronal function. Extensive phosphorylation of the microtubule binding protein tau has been implicated in neurodegeneration and Alzheimer's disease. For the past 15years, these two players have been the focus of an enormous research effort to unravel the biological relevance of their interplay in health and disease, resulting in a series of proposed molecular mechanism of how Pin1 catalysis of tau results in biological phenotypes. Our results presented here refute these mechanisms of Pin1 action. Using NMR, isothermal calorimetry (ITC), and small angle x-ray scattering (SAXS), we dissect binding and catalysis on multiple phosphorylated tau with particular emphasis toward the Alzheimer's associated AT180 tau epitope containing phosphorylated THR231 and SER235. We find that phosphorylated (p-) SER235-PRO, but not pTHR231-PRO, is exclusively catalyzed by full-length Pin1 and isolated PPIase domain. Importantly, site-specific measurements of Pin1-catalysis of CDK2/CycA-phosphorylated full-length tau reveal a number of sites that are catalyzed simultaneously with different efficiencies. Furthermore, we show that the turnover efficiency at pSER235 by Pin1 is independent of both the WW domain and phosphorylation on THR231. Our mechanistic results on site-specific binding and catalysis together with the lack of an increase of dephosphorylation rates by PP2A counter a series of previously published models for the role of Pin1 catalysis of tau in Alzheimer's disease. Together, our data reemphasize the complicated scenario between binding and catalysis of multiple phosphorylated tau by Pin1 and the need for directly linking biological phenotypes and residue-specific turnover in Pin1 substrates.
人类肽基脯氨酰异构酶(PPIase)Pin1在发育过程、细胞增殖和神经元功能中发挥着关键作用。微管结合蛋白tau的广泛磷酸化与神经退行性变和阿尔茨海默病有关。在过去的15年里,这两个因素一直是大量研究工作的重点,旨在揭示它们在健康和疾病中相互作用的生物学相关性,从而产生了一系列关于Pin1催化tau导致生物学表型的分子机制假说。我们在此展示的结果驳斥了这些Pin1作用机制。利用核磁共振(NMR)、等温滴定量热法(ITC)和小角X射线散射(SAXS),我们剖析了Pin1与多种磷酸化tau的结合及催化作用,特别关注与阿尔茨海默病相关的、含有磷酸化苏氨酸231(THR231)和丝氨酸235(SER235)的AT180 tau表位。我们发现,磷酸化的(p-)SER235-PRO,而非pTHR231-PRO,仅由全长Pin1和分离的肽基脯氨酰异构酶结构域催化。重要的是,对细胞周期蛋白依赖性激酶2/细胞周期蛋白A(CDK2/CycA)磷酸化的全长tau进行Pin1催化的位点特异性测量显示,有多个位点同时被不同效率地催化。此外,我们表明Pin1对pSER235的周转效率与WW结构域和THR231上的磷酸化均无关。我们关于位点特异性结合和催化的机制性结果,以及蛋白磷酸酶2A(PP2A)未使去磷酸化速率增加,反驳了一系列先前发表的关于Pin1催化tau在阿尔茨海默病中作用的模型。总之,我们的数据再次强调了Pin1对多种磷酸化tau的结合和催化之间的复杂情况,以及直接将生物学表型与Pin1底物中残基特异性周转联系起来的必要性。