Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY, USA.
Department of Chemistry, Pennsylvania State University, University Park, PA, USA.
Commun Biol. 2021 Mar 25;4(1):398. doi: 10.1038/s42003-021-01906-8.
Accurate gene transcription in eukaryotes depends on isomerization of serine-proline bonds within the carboxy-terminal domain (CTD) of RNA polymerase II. Isomerization is part of the "CTD code" that regulates recruitment of proteins required for transcription and co-transcriptional RNA processing. Saccharomyces cerevisiae Ess1 and its human ortholog, Pin1, are prolyl isomerases that engage the long heptad repeat (YSPTSPS) of the CTD by an unknown mechanism. Here, we used an integrative structural approach to decipher Ess1 interactions with the CTD. Ess1 has a rigid linker between its WW and catalytic domains that enforces a distance constraint for bivalent interaction with the ends of long CTD substrates (≥4-5 heptad repeats). Our binding results suggest that the Ess1 WW domain anchors the proximal end of the CTD substrate during isomerization, and that linker divergence may underlie evolution of substrate specificity.
真核生物中精确的基因转录依赖于 RNA 聚合酶 II 羧基末端结构域(CTD)中丝氨酸-脯氨酸键的异构化。异构化是调节转录和共转录 RNA 加工所需蛋白质募集的“CTD 密码”的一部分。酿酒酵母 Ess1 及其人类同源物 Pin1 是脯氨酰异构酶,它们通过未知的机制与 CTD 的长七肽重复(YSPTSPS)结合。在这里,我们使用整合的结构方法来破译 Ess1 与 CTD 的相互作用。Ess1 在其 WW 结构域和催化结构域之间有一个刚性连接子,该连接子对与长 CTD 底物(≥4-5 个七肽重复)的末端进行二价相互作用施加距离约束。我们的结合结果表明,Ess1 的 WW 结构域在异构化过程中锚定 CTD 底物的近端,而连接子的发散可能是底物特异性进化的基础。