Horton Julie L, Martin Ola J, Lai Ling, Riley Nicholas M, Richards Alicia L, Vega Rick B, Leone Teresa C, Pagliarini David J, Muoio Deborah M, Bedi Kenneth C, Margulies Kenneth B, Coon Joshua J, Kelly Daniel P
Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA.
Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin, USA; Genome Center of Wisconsin, University of Wisconsin - Madison, Madison, Wisconsin, USA.
JCI Insight. 2016 Feb;2(1). doi: 10.1172/jci.insight.84897. Epub 2016 Feb 25.
Myocardial fuel and energy metabolic derangements contribute to the pathogenesis of heart failure. Recent evidence implicates posttranslational mechanisms in the energy metabolic disturbances that contribute to the pathogenesis of heart failure. We hypothesized that accumulation of metabolite intermediates of fuel oxidation pathways drives posttranslational modifications of mitochondrial proteins during the development of heart failure. Myocardial acetylproteomics demonstrated extensive mitochondrial protein lysine hyperacetylation in the early stages of heart failure in well-defined mouse models and the in end-stage failing human heart. To determine the functional impact of increased mitochondrial protein acetylation, we focused on succinate dehydrogenase A (SDHA), a critical component of both the tricarboxylic acid (TCA) cycle and respiratory complex II. An acetyl-mimetic mutation targeting an SDHA lysine residue shown to be hyperacetylated in the failing human heart reduced catalytic function and reduced complex II-driven respiration. These results identify alterations in mitochondrial acetyl-CoA homeostasis as a potential driver of the development of energy metabolic derangements that contribute to heart failure.
心肌燃料和能量代谢紊乱是心力衰竭发病机制的一部分。最近的证据表明,翻译后机制参与了导致心力衰竭发病的能量代谢紊乱。我们假设,在心力衰竭发展过程中,燃料氧化途径的代谢中间产物积累会驱动线粒体蛋白的翻译后修饰。心肌乙酰化蛋白质组学表明,在明确的小鼠模型心力衰竭早期以及终末期衰竭的人类心脏中,线粒体蛋白赖氨酸广泛发生高乙酰化。为了确定线粒体蛋白乙酰化增加的功能影响,我们聚焦于琥珀酸脱氢酶A(SDHA),它是三羧酸(TCA)循环和呼吸复合体II的关键组成部分。针对在衰竭人类心脏中显示发生高乙酰化的SDHA赖氨酸残基的模拟乙酰化突变降低了催化功能,并减少了复合体II驱动的呼吸作用。这些结果表明,线粒体乙酰辅酶A稳态的改变可能是导致心力衰竭的能量代谢紊乱发展的潜在驱动因素。
JCI Insight. 2016-2
Hum Mol Genet. 2014-7-1
Biochem Soc Trans. 2014-8
Mech Ageing Dev. 2015-1
Int J Biochem Cell Biol. 2014-6
Circ Heart Fail. 2014-4-16
Mitochondrion. 2014-11
Nat Rev Cardiol. 2025-6-22
EPMA J. 2025-4-15
J Cardiovasc Aging. 2024
Trends Endocrinol Metab. 2025-2
Nat Cardiovasc Res. 2023-6
J Mol Cell Cardiol. 2024-10
Circulation. 2016-2-23
Biochemistry. 2015-6-30
Cell Metab. 2015-4-7
ACS Chem Biol. 2015-1-16
Nat Rev Mol Cell Biol. 2014-8