Thulin M
Department of Statistics, Uppsala University, Uppsala, Sweden.
Stat Med. 2016 Sep 10;35(20):3623-44. doi: 10.1002/sim.6945. Epub 2016 Mar 21.
Testing whether the mean vector of a multivariate set of biomarkers differs between several populations is an increasingly common problem in medical research. Biomarker data is often left censored because some measurements fall below the laboratory's detection limit. We investigate how such censoring affects multivariate two-sample and one-way multivariate analysis of variance tests. Type I error rates, power and robustness to increasing censoring are studied, under both normality and non-normality. Parametric tests are found to perform better than non-parametric alternatives, indicating that the current recommendations for analysis of censored multivariate data may have to be revised. Copyright © 2016 John Wiley & Sons, Ltd.
检验多组生物标志物的均值向量在多个总体之间是否存在差异,这在医学研究中是一个日益常见的问题。生物标志物数据常常存在左删失情况,因为一些测量值低于实验室的检测限。我们研究了这种删失如何影响多变量双样本和单因素多变量方差分析检验。在正态和非正态条件下,研究了I型错误率、功效以及对增加删失情况的稳健性。结果发现,参数检验比非参数检验表现更好,这表明当前关于删失多变量数据的分析建议可能需要修订。版权所有© 2016约翰·威利父子有限公司。