Department of Construction Engineering, École de technologie supérieure, Montreal, Québec, Canada.
Environ Toxicol Chem. 2018 Mar;37(3):643-656. doi: 10.1002/etc.4046. Epub 2018 Feb 23.
Various statistical tests on concentration data serve to support decision-making regarding characterization and monitoring of contaminated media, assessing exposure to a chemical, and quantifying the associated risks. However, the routine statistical protocols cannot be directly applied because of challenges arising from nondetects or left-censored observations, which are concentration measurements below the detection limit of measuring instruments. Despite the existence of techniques based on survival analysis that can adjust for nondetects, these are seldom taken into account properly. A comprehensive review of the literature showed that managing policies regarding analysis of censored data do not always agree and that guidance from regulatory agencies may be outdated. Therefore, researchers and practitioners commonly resort to the most convenient way of tackling the censored data problem by substituting nondetects with arbitrary constants prior to data analysis, although this is generally regarded as a bias-prone approach. Hoping to improve the interpretation of concentration data, the present article aims to familiarize researchers in different disciplines with the significance of left-censored observations and provides theoretical and computational recommendations (under both frequentist and Bayesian frameworks) for adequate analysis of censored data. In particular, the present article synthesizes key findings from previous research with respect to 3 noteworthy aspects of inferential statistics: estimation of descriptive statistics, hypothesis testing, and regression analysis. Environ Toxicol Chem 2018;37:643-656. © 2017 SETAC.
各种针对浓度数据的统计检验可用于支持有关受污染介质的特征描述和监测、评估对某种化学物质的接触以及量化相关风险的决策。然而,由于无法检测到或存在左截断观测值(低于测量仪器检测限的浓度测量值)所带来的挑战,常规的统计方案无法直接应用。尽管存在基于生存分析的技术可以对无法检测到的情况进行调整,但这些技术很少得到正确考虑。对文献的全面回顾表明,关于分析有删失数据的管理政策并不总是一致的,监管机构的指导意见可能已经过时。因此,研究人员和从业人员通常倾向于在数据分析之前用任意常数代替无法检测到的数据来处理删失数据问题,尽管这种方法通常被认为是一种有偏倚风险的方法。为了改善对浓度数据的解释,本文旨在使不同学科的研究人员熟悉左截断观测值的重要性,并为充分分析删失数据提供理论和计算建议(在频率主义和贝叶斯框架下)。特别是,本文综合了关于推断统计学的 3 个值得注意方面的先前研究中的关键发现:描述性统计估计、假设检验和回归分析。Environ Toxicol Chem 2018;37:643-656. © 2017 SETAC.