Suppr超能文献

在生理氧条件下培养的人类细胞利用两种帽结合蛋白募集不同的信使核糖核酸进行翻译。

Human Cells Cultured under Physiological Oxygen Utilize Two Cap-binding Proteins to recruit Distinct mRNAs for Translation.

作者信息

Timpano Sara, Uniacke James

机构信息

From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.

From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada

出版信息

J Biol Chem. 2016 May 13;291(20):10772-82. doi: 10.1074/jbc.M116.717363. Epub 2016 Mar 21.

Abstract

Translation initiation is a focal point of translational control and requires the binding of eIF4E to the 5' cap of mRNA. Under conditions of extreme oxygen depletion (hypoxia), human cells repress eIF4E and switch to an alternative cap-dependent translation mediated by a homolog of eIF4E, eIF4E2. This homolog forms a complex with the oxygen-regulated hypoxia-inducible factor 2α and can escape translation repression. This complex mediates cap-dependent translation under cell culture conditions of 1% oxygen (to mimic tumor microenvironments), whereas eIF4E mediates cap-dependent translation at 21% oxygen (ambient air). However, emerging evidence suggests that culturing cells in ambient air, or "normoxia," is far from physiological or "normal." In fact, oxygen in human tissues ranges from 1-11% or "physioxia." Here we show that two distinct modes of cap-dependent translation initiation are active during physioxia and act on separate pools of mRNAs. The oxygen-dependent activities of eIF4E and eIF4E2 are elucidated by observing their polysome association and the status of mammalian target of rapamycin complex 1 (eIF4E-dependent) or hypoxia-inducible factor 2α expression (eIF4E2-dependent). We have identified oxygen conditions where eIF4E is the dominant cap-binding protein (21% normoxia or standard cell culture conditions), where eIF4E2 is the dominant cap-binding protein (1% hypoxia or ischemic diseases and cancerous tumors), and where both cap-binding proteins act simultaneously to initiate the translation of distinct mRNAs (1-11% physioxia or during development and stem cell differentiation). These data suggest that the physioxic proteome is generated by initiating translation of mRNAs via two distinct but complementary cap-binding proteins.

摘要

翻译起始是翻译控制的一个焦点,需要真核生物翻译起始因子4E(eIF4E)与mRNA的5'帽结合。在极端缺氧(低氧)条件下,人类细胞会抑制eIF4E,并切换为由eIF4E的同源物eIF4E2介导的另一种帽依赖性翻译。这种同源物与氧调节的缺氧诱导因子2α形成复合物,并且可以逃避翻译抑制。在1%氧气的细胞培养条件下(以模拟肿瘤微环境),该复合物介导帽依赖性翻译,而eIF4E在21%氧气(环境空气)下介导帽依赖性翻译。然而,新出现的证据表明,在环境空气中培养细胞,即“常氧”,远非生理状态或“正常”状态。事实上,人体组织中的氧气含量范围为1-11%,即“生理氧浓度”。在这里,我们表明在生理氧浓度下,帽依赖性翻译起始的两种不同模式是活跃的,并且作用于不同的mRNA池。通过观察eIF4E和eIF4E2的多核糖体结合以及雷帕霉素复合物1(eIF4E依赖性)的哺乳动物靶标或缺氧诱导因子2α表达(eIF4E2依赖性)的状态,阐明了它们的氧依赖性活性。我们已经确定了eIF4E是主要帽结合蛋白的氧气条件(21%常氧或标准细胞培养条件)、eIF4E2是主要帽结合蛋白的氧气条件(1%低氧或缺血性疾病和癌性肿瘤)以及两种帽结合蛋白同时作用以启动不同mRNA翻译的氧气条件(1-11%生理氧浓度或在发育和干细胞分化期间)。这些数据表明,生理氧浓度下的蛋白质组是通过两种不同但互补的帽结合蛋白启动mRNA的翻译而产生的。

相似文献

1
Human Cells Cultured under Physiological Oxygen Utilize Two Cap-binding Proteins to recruit Distinct mRNAs for Translation.
J Biol Chem. 2016 May 13;291(20):10772-82. doi: 10.1074/jbc.M116.717363. Epub 2016 Mar 21.
2
An oxygen-regulated switch in the protein synthesis machinery.
Nature. 2012 May 6;486(7401):126-9. doi: 10.1038/nature11055.
4
Distinct recruitment of human eIF4E isoforms to processing bodies and stress granules.
BMC Mol Biol. 2016 Aug 30;17(1):21. doi: 10.1186/s12867-016-0072-x.
5
The eIF4E2-Directed Hypoxic Cap-Dependent Translation Machinery Reveals Novel Therapeutic Potential for Cancer Treatment.
Oxid Med Cell Longev. 2017;2017:6098107. doi: 10.1155/2017/6098107. Epub 2017 Nov 26.
6
Cap-binding protein 1-mediated and eukaryotic translation initiation factor 4E-mediated pioneer rounds of translation in yeast.
Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4258-63. doi: 10.1073/pnas.0500684102. Epub 2005 Mar 7.
8
Tristetraprolin Recruits Eukaryotic Initiation Factor 4E2 To Repress Translation of AU-Rich Element-Containing mRNAs.
Mol Cell Biol. 2015 Nov;35(22):3921-32. doi: 10.1128/MCB.00845-15. Epub 2015 Sep 14.
9
MicroRNAs recruit eIF4E2 to repress translation of target mRNAs.
Protein Cell. 2017 Oct;8(10):750-761. doi: 10.1007/s13238-017-0444-0. Epub 2017 Jul 28.
10
Investigating the consequences of eIF4E2 (4EHP) interaction with 4E-transporter on its cellular distribution in HeLa cells.
PLoS One. 2013 Aug 21;8(8):e72761. doi: 10.1371/journal.pone.0072761. eCollection 2013.

引用本文的文献

2
Impaired neural stress resistance and loss of REST in bipolar disorder.
Mol Psychiatry. 2024 Jan;29(1):153-164. doi: 10.1038/s41380-023-02313-7. Epub 2023 Nov 8.
3
Improvement of Antioxidant Defences in Keratinocytes Grown in Physioxia: Comparison of 2D and 3D Models.
Oxid Med Cell Longev. 2023 Jun 17;2023:6829931. doi: 10.1155/2023/6829931. eCollection 2023.
4
The dark side of mRNA translation and the translation machinery in glioblastoma.
Front Cell Dev Biol. 2023 Mar 13;11:1086964. doi: 10.3389/fcell.2023.1086964. eCollection 2023.
7
EDF1 coordinates cellular responses to ribosome collisions.
Elife. 2020 Aug 3;9:e58828. doi: 10.7554/eLife.58828.

本文引用的文献

1
Systemic Reprogramming of Translation Efficiencies on Oxygen Stimulus.
Cell Rep. 2016 Feb 16;14(6):1293-1300. doi: 10.1016/j.celrep.2016.01.036. Epub 2016 Feb 4.
2
Transcriptome-wide studies uncover the diversity of modes of mRNA recruitment to eukaryotic ribosomes.
Crit Rev Biochem Mol Biol. 2014 Mar-Apr;49(2):164-77. doi: 10.3109/10409238.2014.887051. Epub 2014 Feb 13.
3
Cancer cells exploit eIF4E2-directed synthesis of hypoxia response proteins to drive tumor progression.
Cancer Res. 2014 Mar 1;74(5):1379-89. doi: 10.1158/0008-5472.CAN-13-2278. Epub 2014 Jan 9.
5
A novel 4EHP-GIGYF2 translational repressor complex is essential for mammalian development.
Mol Cell Biol. 2012 Sep;32(17):3585-93. doi: 10.1128/MCB.00455-12. Epub 2012 Jul 2.
6
An oxygen-regulated switch in the protein synthesis machinery.
Nature. 2012 May 6;486(7401):126-9. doi: 10.1038/nature11055.
7
A unifying model for mTORC1-mediated regulation of mRNA translation.
Nature. 2012 May 2;485(7396):109-13. doi: 10.1038/nature11083.
8
Deregulation of cap-dependent mRNA translation increases tumour radiosensitivity through reduction of the hypoxic fraction.
Radiother Oncol. 2011 Jun;99(3):385-91. doi: 10.1016/j.radonc.2011.05.047. Epub 2011 Jun 12.
9
Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia.
J Cell Mol Med. 2011 Jun;15(6):1239-53. doi: 10.1111/j.1582-4934.2011.01258.x.
10
Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations.
Cell. 2010 May 28;141(5):872-83. doi: 10.1016/j.cell.2010.04.010. Epub 2010 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验