Timpano Sara, Uniacke James
From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
J Biol Chem. 2016 May 13;291(20):10772-82. doi: 10.1074/jbc.M116.717363. Epub 2016 Mar 21.
Translation initiation is a focal point of translational control and requires the binding of eIF4E to the 5' cap of mRNA. Under conditions of extreme oxygen depletion (hypoxia), human cells repress eIF4E and switch to an alternative cap-dependent translation mediated by a homolog of eIF4E, eIF4E2. This homolog forms a complex with the oxygen-regulated hypoxia-inducible factor 2α and can escape translation repression. This complex mediates cap-dependent translation under cell culture conditions of 1% oxygen (to mimic tumor microenvironments), whereas eIF4E mediates cap-dependent translation at 21% oxygen (ambient air). However, emerging evidence suggests that culturing cells in ambient air, or "normoxia," is far from physiological or "normal." In fact, oxygen in human tissues ranges from 1-11% or "physioxia." Here we show that two distinct modes of cap-dependent translation initiation are active during physioxia and act on separate pools of mRNAs. The oxygen-dependent activities of eIF4E and eIF4E2 are elucidated by observing their polysome association and the status of mammalian target of rapamycin complex 1 (eIF4E-dependent) or hypoxia-inducible factor 2α expression (eIF4E2-dependent). We have identified oxygen conditions where eIF4E is the dominant cap-binding protein (21% normoxia or standard cell culture conditions), where eIF4E2 is the dominant cap-binding protein (1% hypoxia or ischemic diseases and cancerous tumors), and where both cap-binding proteins act simultaneously to initiate the translation of distinct mRNAs (1-11% physioxia or during development and stem cell differentiation). These data suggest that the physioxic proteome is generated by initiating translation of mRNAs via two distinct but complementary cap-binding proteins.
翻译起始是翻译控制的一个焦点,需要真核生物翻译起始因子4E(eIF4E)与mRNA的5'帽结合。在极端缺氧(低氧)条件下,人类细胞会抑制eIF4E,并切换为由eIF4E的同源物eIF4E2介导的另一种帽依赖性翻译。这种同源物与氧调节的缺氧诱导因子2α形成复合物,并且可以逃避翻译抑制。在1%氧气的细胞培养条件下(以模拟肿瘤微环境),该复合物介导帽依赖性翻译,而eIF4E在21%氧气(环境空气)下介导帽依赖性翻译。然而,新出现的证据表明,在环境空气中培养细胞,即“常氧”,远非生理状态或“正常”状态。事实上,人体组织中的氧气含量范围为1-11%,即“生理氧浓度”。在这里,我们表明在生理氧浓度下,帽依赖性翻译起始的两种不同模式是活跃的,并且作用于不同的mRNA池。通过观察eIF4E和eIF4E2的多核糖体结合以及雷帕霉素复合物1(eIF4E依赖性)的哺乳动物靶标或缺氧诱导因子2α表达(eIF4E2依赖性)的状态,阐明了它们的氧依赖性活性。我们已经确定了eIF4E是主要帽结合蛋白的氧气条件(21%常氧或标准细胞培养条件)、eIF4E2是主要帽结合蛋白的氧气条件(1%低氧或缺血性疾病和癌性肿瘤)以及两种帽结合蛋白同时作用以启动不同mRNA翻译的氧气条件(1-11%生理氧浓度或在发育和干细胞分化期间)。这些数据表明,生理氧浓度下的蛋白质组是通过两种不同但互补的帽结合蛋白启动mRNA的翻译而产生的。