Kadamur Ganesh, Ross Elliott M
From the Department of Pharmacology, Molecular Biophysics Graduate Program, and Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390.
From the Department of Pharmacology, Molecular Biophysics Graduate Program, and Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
J Biol Chem. 2016 May 20;291(21):11394-406. doi: 10.1074/jbc.M116.723940. Epub 2016 Mar 21.
Mammalian phospholipase C-β (PLC-β) isoforms are stimulated by heterotrimeric G protein subunits and members of the Rho GTPase family of small G proteins. Although recent structural studies showed how Gαq and Rac1 bind PLC-β, there is a lack of consensus regarding the Gβγ binding site in PLC-β. Using FRET between cerulean fluorescent protein-labeled Gβγ and the Alexa Fluor 594-labeled PLC-β pleckstrin homology (PH) domain, we demonstrate that the PH domain is the minimal Gβγ binding region in PLC-β3. We show that the isolated PH domain can compete with full-length PLC-β3 for binding Gβγ but not Gαq, Using sequence conservation, structural analyses, and mutagenesis, we identify a hydrophobic face of the PLC-β PH domain as the Gβγ binding interface. This PH domain surface is not solvent-exposed in crystal structures of PLC-β, necessitating conformational rearrangement to allow Gβγ binding. Blocking PH domain motion in PLC-β by cross-linking it to the EF hand domain inhibits stimulation by Gβγ without altering basal activity or Gαq response. The fraction of PLC-β cross-linked is proportional to the fractional loss of Gβγ response. Cross-linked PLC-β does not bind Gβγ in a FRET-based Gβγ-PLC-β binding assay. We propose that unliganded PLC-β exists in equilibrium between a closed conformation observed in crystal structures and an open conformation where the PH domain moves away from the EF hands. Therefore, intrinsic movement of the PH domain in PLC-β modulates Gβγ access to its binding site.
哺乳动物磷脂酶C-β(PLC-β)亚型受异源三聚体G蛋白亚基和小G蛋白Rho GTPase家族成员的刺激。尽管最近的结构研究表明Gαq和Rac1如何结合PLC-β,但关于PLC-β中Gβγ结合位点尚无共识。利用在蓝色荧光蛋白标记的Gβγ与Alexa Fluor 594标记的PLC-β普列克底物蛋白同源(PH)结构域之间的荧光共振能量转移,我们证明PH结构域是PLC-β3中最小的Gβγ结合区域。我们表明,分离的PH结构域可以与全长PLC-β3竞争结合Gβγ,但不能与Gαq竞争。利用序列保守性、结构分析和诱变,我们确定PLC-β PH结构域的一个疏水表面为Gβγ结合界面。在PLC-β的晶体结构中,该PH结构域表面不暴露于溶剂中,需要构象重排以允许Gβγ结合。通过将PLC-β中的PH结构域与EF手结构域交联来阻断其运动,可抑制Gβγ的刺激,而不改变基础活性或Gαq反应。交联的PLC-β的比例与Gβγ反应的分数损失成正比。在基于荧光共振能量转移的Gβγ-PLC-β结合试验中,交联的PLC-β不结合Gβγ。我们提出,未结合配体的PLC-β存在于晶体结构中观察到的封闭构象与PH结构域远离EF手的开放构象之间的平衡中。因此,PLC-β中PH结构域的内在运动调节Gβγ对其结合位点的接近。