Suppr超能文献

利用机器学习评估匹配研究中的协变量平衡。

Using machine learning to assess covariate balance in matching studies.

作者信息

Linden Ariel, Yarnold Paul R

机构信息

Linden Consulting Group, LLC, Ann Arbor, MI, USA.

Division of General Medicine, Medical School, University of Michigan, Ann Arbor, MI, USA.

出版信息

J Eval Clin Pract. 2016 Dec;22(6):844-850. doi: 10.1111/jep.12538. Epub 2016 Mar 23.

Abstract

In order to assess the effectiveness of matching approaches in observational studies, investigators typically present summary statistics for each observed pre-intervention covariate, with the objective of showing that matching reduces the difference in means (or proportions) between groups to as close to zero as possible. In this paper, we introduce a new approach to distinguish between study groups based on their distributions of the covariates using a machine-learning algorithm called optimal discriminant analysis (ODA). Assessing covariate balance using ODA as compared with the conventional method has several key advantages: the ability to ascertain how individuals self-select based on optimal (maximum-accuracy) cut-points on the covariates; the application to any variable metric and number of groups; its insensitivity to skewed data or outliers; and the use of accuracy measures that can be widely applied to all analyses. Moreover, ODA accepts analytic weights, thereby extending the assessment of covariate balance to any study design where weights are used for covariate adjustment. By comparing the two approaches using empirical data, we are able to demonstrate that using measures of classification accuracy as balance diagnostics produces highly consistent results to those obtained via the conventional approach (in our matched-pairs example, ODA revealed a weak statistically significant relationship not detected by the conventional approach). Thus, investigators should consider ODA as a robust complement, or perhaps alternative, to the conventional approach for assessing covariate balance in matching studies.

摘要

为了评估观察性研究中匹配方法的有效性,研究者通常会给出每个观察到的干预前协变量的汇总统计数据,目的是表明匹配能将组间均值(或比例)的差异尽可能缩小至接近零。在本文中,我们引入了一种新方法,使用一种名为最优判别分析(ODA)的机器学习算法,根据协变量的分布来区分研究组。与传统方法相比,使用ODA评估协变量平衡有几个关键优势:能够确定个体如何基于协变量的最优(最大准确率)切点进行自我选择;适用于任何变量度量和组数;对数据偏态或异常值不敏感;以及使用可广泛应用于所有分析的准确率度量。此外,ODA接受分析权重,从而将协变量平衡的评估扩展到任何使用权重进行协变量调整的研究设计。通过使用实证数据比较这两种方法,我们能够证明,使用分类准确率度量作为平衡诊断指标所产生的结果与通过传统方法获得的结果高度一致(在我们的配对示例中,ODA揭示了一种传统方法未检测到的微弱统计学显著关系)。因此,研究者在匹配研究中评估协变量平衡时,应考虑将ODA作为传统方法的有力补充,甚至可能作为替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验