Suppr超能文献

纳入受试者间信息以提高受试者 P300 分类器的准确性。

Incorporation of Inter-Subject Information to Improve the Accuracy of Subject-Specific P300 Classifiers.

机构信息

1 Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China.

出版信息

Int J Neural Syst. 2016 May;26(3):1650010. doi: 10.1142/S0129065716500106. Epub 2016 Jan 10.

Abstract

Although the inter-subject information has been demonstrated to be effective for a rapid calibration of the P300-based brain-computer interface (BCI), it has never been comprehensively tested to find if the incorporation of heterogeneous data could enhance the accuracy. This study aims to improve the subject-specific P300 classifier by adding other subject's data. A classifier calibration strategy, weighted ensemble learning generic information (WELGI), was developed, in which elementary classifiers were constructed by using both the intra- and inter-subject information and then integrated into a strong classifier with a weight assessment. 55 subjects were recruited to spell 20 characters offline using the conventional P300-based BCI, i.e. the P300-speller. Four different metrics, the P300 accuracy and precision, the round accuracy, and the character accuracy, were performed for a comprehensive investigation. The results revealed that the classifier constructed on the training dataset in combination with adding other subject's data was significantly superior to that without the inter-subject information. Therefore, the WELGI is an effective classifier calibration strategy which uses the inter-subject information to improve the accuracy of subject-specific P300 classifiers, and could also be applied to other BCI paradigms.

摘要

虽然主体间信息已被证明可有效快速校准基于 P300 的脑机接口 (BCI),但尚未全面测试将异质数据纳入是否可以提高准确性。本研究旨在通过添加其他受试者的数据来改进特定于受试者的 P300 分类器。开发了一种分类器校准策略,加权集成学习通用信息 (WELGI),其中基本分类器是使用内和主体间信息构建的,然后通过权重评估集成到一个强分类器中。55 名受试者使用传统的基于 P300 的 BCI(即 P300 拼写器)离线拼写 20 个字符。进行了四项不同的指标评估,包括 P300 准确性和精度、轮次准确性和字符准确性,以进行全面调查。结果表明,在训练数据集上构建的分类器结合添加其他受试者的数据明显优于没有主体间信息的分类器。因此,WELGI 是一种有效的分类器校准策略,它使用主体间信息来提高特定于受试者的 P300 分类器的准确性,并且也可以应用于其他 BCI 范式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验