Suppr超能文献

一种基于 P300 范式中 SSVEP 整合的新型混合 BCI 拼写器。

A novel hybrid BCI speller based on the incorporation of SSVEP into the P300 paradigm.

机构信息

Department of Automatic Control, College of Mechatronics and Automation, National University of Defense Technology, 410073, Changsha, Hunan, People's Republic of China.

出版信息

J Neural Eng. 2013 Apr;10(2):026012. doi: 10.1088/1741-2560/10/2/026012. Epub 2013 Feb 21.

Abstract

OBJECTIVE

Although extensive studies have shown improvement in spelling accuracy, the conventional P300 speller often exhibits errors, which occur in almost the same row or column relative to the target. To address this issue, we propose a novel hybrid brain-computer interface (BCI) approach by incorporating the steady-state visual evoked potential (SSVEP) into the conventional P300 paradigm.

APPROACH

We designed a periodic stimuli mechanism and superimposed it onto the P300 stimuli to increase the difference between the symbols in the same row or column. Furthermore, we integrated the random flashings and periodic flickers to simultaneously evoke the P300 and SSVEP, respectively. Finally, we developed a hybrid detection mechanism based on the P300 and SSVEP in which the target symbols are detected by the fusion of three-dimensional, time-frequency features.

MAIN RESULTS

The results obtained from 12 healthy subjects show that an online classification accuracy of 93.85% and information transfer rate of 56.44 bit/min were achieved using the proposed BCI speller in only a single trial. Specifically, 5 of the 12 subjects exhibited an information transfer rate of 63.56 bit/min with an accuracy of 100%.

SIGNIFICANCE

The pilot studies suggested that the proposed BCI speller could achieve a better and more stable system performance compared with the conventional P300 speller, and it is promising for achieving quick spelling in stimulus-driven BCI applications.

摘要

目的

尽管大量研究表明拼写准确性有所提高,但传统 P300 拼写器经常出现错误,这些错误几乎出现在与目标相对应的同一行或列中。为了解决这个问题,我们提出了一种新的混合脑机接口 (BCI) 方法,将稳态视觉诱发电位 (SSVEP) 纳入传统的 P300 范式。

方法

我们设计了一个周期性刺激机制,并将其叠加在 P300 刺激上,以增加同一行或列中符号之间的差异。此外,我们整合了随机闪烁和周期性闪烁,分别同时唤起 P300 和 SSVEP。最后,我们基于 P300 和 SSVEP 开发了一种混合检测机制,其中目标符号通过融合三维时频特征进行检测。

主要结果

来自 12 名健康受试者的结果表明,在仅一次试验中,使用所提出的 BCI 拼写器可实现 93.85%的在线分类准确率和 56.44 bit/min 的信息传输率。具体来说,12 名受试者中有 5 名的信息传输率为 63.56 bit/min,准确率为 100%。

意义

初步研究表明,与传统的 P300 拼写器相比,所提出的 BCI 拼写器可以实现更好、更稳定的系统性能,有望在刺激驱动的 BCI 应用中实现快速拼写。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验