Sieben Judith M, van Otten Ilse, Lataster Arno, Froeling Martijn, Nederveen Aart J, Strijkers Gustav J, Drost Maarten R
*Department of Anatomy & Embryology, Maastricht University†CAPHRI School for Public Health and Primary Care, Maastricht‡Department of Radiology, Tweestedenziekenhuis, Tilburg§Department of Human Movement Science, Maastricht University, Maastricht∥Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven¶Department of Radiology, Amsterdam Academic Medical Center, Amsterdam#NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht, The Netherlands.
Clin Spine Surg. 2016 Apr;29(3):E139-45. doi: 10.1097/BSD.0000000000000036.
Diffusion tensor magnetic resonance imaging (DT-MRI) reconstruction of lumbar erector spinae (ES) compared with cadaver dissection.
The aim of this study was to reconstruct the human lumbar ES from in vivo DT-MRI measurements and to compare the results with literature and cadaver dissection.
DT-MRI enables 3-dimensional in vivo reconstruction of muscle architecture. Insight in ES architecture may improve the understanding of low back function. Furthermore, DT-MRI reconstructions allow individualized biomechanical modeling, which may serve as a clinical tool in injury evaluation and in improvement of understanding of pathologies like scoliosis.
The lumbar spine of 1 healthy male volunteer was scanned using a 3.0 T clinical MRI scanner. MRI data acquisition consisted of 3 parts: (1) high-resolution T1-weighted turbo spin echo for anatomical reference; (2) DT-MRI measurements for fiber tractography; (3) dual echo gradient echo sequence for signal correction purposes. After processing, DT-MRI data were exported to a custom-built software program for fiber tractography. The resulting reconstructions were anatomically validated by comparison with cadaver dissection and literature.
DT-MRI reconstruction of 4 parts of the lumbar ES (thoracic part of iliocostalis lumborum, lumbar part of iliocostalis lumborum, thoracic part of longissimus thoracis, and lumbar part of longissimus thoracis) adequately reflected its complex geometry. Some inaccuracies were found in reconstruction details. DT-MRI reconstructions were generally in agreement with anatomical descriptions from literature and with findings in a dissected cadaver specimen.
DT-MRI enables anatomically valid reconstruction of ES architecture. However, for reliable reconstruction of the smallest fascicles and attachments a higher resolution or application of higher-order models is needed. Reconstructions can be used as input for estimation of muscle architecture parameters in individualized biomechanical modeling. Such models are promising as a tool in clinical evaluation and in research of low back pain mechanisms.
腰椎竖脊肌的扩散张量磁共振成像(DT-MRI)重建与尸体解剖对比。
本研究旨在通过体内DT-MRI测量重建人体腰椎竖脊肌,并将结果与文献及尸体解剖结果进行比较。
DT-MRI能够对肌肉结构进行三维体内重建。了解竖脊肌结构可能有助于增进对腰椎功能的理解。此外,DT-MRI重建可实现个性化生物力学建模,这可作为损伤评估的临床工具,并有助于更好地理解脊柱侧弯等病症。
使用3.0T临床MRI扫描仪对1名健康男性志愿者的腰椎进行扫描。MRI数据采集包括3个部分:(1)用于解剖参考的高分辨率T1加权快速自旋回波序列;(2)用于纤维束成像的DT-MRI测量;(3)用于信号校正的双回波梯度回波序列。处理后,将DT-MRI数据导出到定制软件程序进行纤维束成像。通过与尸体解剖及文献对比,对所得重建结果进行解剖学验证。
腰椎竖脊肌4个部分(腰髂肋肌胸段、腰髂肋肌腰段、胸最长肌胸段和胸最长肌腰段)的DT-MRI重建充分反映了其复杂的几何结构。在重建细节方面发现了一些不准确之处。DT-MRI重建结果总体上与文献中的解剖描述以及解剖尸体标本的结果一致。
DT-MRI能够对竖脊肌结构进行解剖学上有效的重建。然而,为了可靠地重建最小的肌束和附着点,需要更高的分辨率或应用高阶模型。重建结果可作为个性化生物力学建模中肌肉结构参数估计的输入。此类模型有望成为临床评估和腰痛机制研究的工具。