Suppr超能文献

HIV-1潜伏与清除:过去、现在与未来

HIV-1 Latency and Eradication: Past, Present and Future.

作者信息

Datta Prasun K, Kaminski Rafal, Hu Wenhui, Pirrone Vanessa, Sullivan Neil T, Nonnemacher Michael R, Dampier Will, Wigdahl Brian, Khalili Kamel

机构信息

Department of Neuroscience, Center for Neurovirology and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA 19140, USA.

出版信息

Curr HIV Res. 2016;14(5):431-441. doi: 10.2174/1570162x14666160324125536.

Abstract

BACKGROUND

It is well established that antiretroviral therapy (ART), while highly effective in controlling HIV replication, cannot eliminate virus from the body. Therefore, the majority of HIV-1-infected individuals remain at risk for developing AIDS due to persistence of infected reservoir cells serving as a source of virus re-emergence. Several reservoirs containing replication competent HIV-1 have been identified, most notably CD4+ T cells. Cells of the myeloid lineage, which are the first line of defense against pathogens and participate in HIV dissemination into sanctuary organs, also serve as cellular reservoirs of HIV-1. In latently infected resting CD4+ T cells, the integrated copies of proviral DNA remain in a dormant state, yet possess the ability to produce replication competent virus after cellular activation. Studies have demonstrated that modification of chromatin structure plays a role in establishing persistence, in part suggesting that latency is, controlled epigenetically.

CONCLUSION

Current efforts to eradicate HIV-1 from this cell population focus primarily on a "shock and kill" approach through cellular reactivation to trigger elimination of virus producing cells by cytolysis or host immune responses. However, studies revealed several limitations to this approach that require more investigation to assess its clinical application. Recent advances in gene editing technology prompted use of this approach for inactivating integrated proviral DNA in the genome of latently infected cells. This technology, which requires a detailed understanding of the viral genetics and robust delivery, may serve as a powerful strategy to eliminate the latent reservoir in the host leading to a sterile cure of AIDS.

摘要

背景

众所周知,抗逆转录病毒疗法(ART)虽然在控制HIV复制方面非常有效,但无法从体内清除病毒。因此,由于作为病毒重新出现来源的受感染储存细胞持续存在,大多数HIV-1感染者仍有患艾滋病的风险。已经确定了几个含有具有复制能力的HIV-1的储存库,最显著的是CD4+T细胞。髓系谱系细胞是抵御病原体的第一道防线,并参与HIV向免疫赦免器官的传播,它们也作为HIV-1的细胞储存库。在潜伏感染的静止CD4+T细胞中,前病毒DNA的整合拷贝处于休眠状态,但在细胞激活后具有产生具有复制能力的病毒的能力。研究表明,染色质结构的改变在建立持续性方面起作用,部分表明潜伏期是由表观遗传控制的。

结论

目前从该细胞群体中根除HIV-1的努力主要集中在通过细胞重新激活来触发细胞溶解或宿主免疫反应以消除病毒产生细胞的“激活并杀死”方法。然而,研究揭示了这种方法的几个局限性,需要更多的研究来评估其临床应用。基因编辑技术的最新进展促使使用这种方法来灭活潜伏感染细胞基因组中的整合前病毒DNA。这种技术需要对病毒遗传学有详细的了解和强大的递送能力,可能是消除宿主中潜伏储存库从而实现艾滋病无菌治愈的有力策略。

相似文献

1
HIV-1 Latency and Eradication: Past, Present and Future.
Curr HIV Res. 2016;14(5):431-441. doi: 10.2174/1570162x14666160324125536.
2
The Pathway To Establishing HIV Latency Is Critical to How Latency Is Maintained and Reversed.
J Virol. 2018 Jun 13;92(13). doi: 10.1128/JVI.02225-17. Print 2018 Jul 1.
4
Low Inducibility of Latent Human Immunodeficiency Virus Type 1 Proviruses as a Major Barrier to Cure.
J Infect Dis. 2021 Feb 15;223(12 Suppl 2):13-21. doi: 10.1093/infdis/jiaa649.
5
RNA-induced epigenetic silencing inhibits HIV-1 reactivation from latency.
Retrovirology. 2018 Oct 4;15(1):67. doi: 10.1186/s12977-018-0451-0.
6
Strategies to eradicate HIV from infected patients: elimination of latent provirus reservoirs.
Cell Mol Life Sci. 2019 Sep;76(18):3583-3600. doi: 10.1007/s00018-019-03156-8. Epub 2019 May 25.
9
Irreversible Loss of HIV-1 Proviral Competence in Myeloid Cells upon Suppression of NF-κB Activity.
J Virol. 2022 Jun 22;96(12):e0048422. doi: 10.1128/jvi.00484-22. Epub 2022 May 23.

引用本文的文献

1
Impact of chromatin on HIV-1 latency: a multi-dimensional perspective.
Epigenetics Chromatin. 2025 Mar 8;18(1):9. doi: 10.1186/s13072-025-00573-x.
2
Revisiting JC virus and progressive multifocal leukoencephalopathy.
J Neurovirol. 2023 Oct;29(5):524-537. doi: 10.1007/s13365-023-01164-w. Epub 2023 Sep 2.
3
Controversies in the Design of Strategies for the Cure of HIV Infection.
Pathogens. 2023 Feb 15;12(2):322. doi: 10.3390/pathogens12020322.
6
Design, synthesis, and biological evaluation of AV6 derivatives as novel dual reactivators of latent HIV-1.
RSC Adv. 2018 May 11;8(31):17279-17292. doi: 10.1039/c8ra01216d. eCollection 2018 May 9.
7
Targeting CCR5 as a Component of an HIV-1 Therapeutic Strategy.
Front Immunol. 2022 Jan 20;12:816515. doi: 10.3389/fimmu.2021.816515. eCollection 2021.
8
The gammaherpesvirus 68 viral cyclin facilitates expression of LANA.
PLoS Pathog. 2021 Nov 15;17(11):e1010019. doi: 10.1371/journal.ppat.1010019. eCollection 2021 Nov.
9
lncRNAs in T lymphocytes: RNA regulation at the heart of the immune response.
Am J Physiol Cell Physiol. 2021 Mar 1;320(3):C415-C427. doi: 10.1152/ajpcell.00069.2020. Epub 2020 Dec 9.
10
The Evolution of Dendritic Cell Immunotherapy against HIV-1 Infection: Improvements and Outlook.
J Immunol Res. 2020 May 25;2020:9470102. doi: 10.1155/2020/9470102. eCollection 2020.

本文引用的文献

3
Activation and lysis of human CD4 cells latently infected with HIV-1.
Nat Commun. 2015 Oct 20;6:8447. doi: 10.1038/ncomms9447.
4
CNS reservoirs for HIV: implications for eradication.
J Virus Erad. 2015 Apr;1(2):67-71. doi: 10.1016/S2055-6640(20)30489-1.
5
Preparation and characterization of anti-HIV nanodrug targeted to microfold cell of gut-associated lymphoid tissue.
Int J Nanomedicine. 2015 Sep 18;10:5819-35. doi: 10.2147/IJN.S68348. eCollection 2015.
7
Dual-Affinity Re-Targeting proteins direct T cell-mediated cytolysis of latently HIV-infected cells.
J Clin Invest. 2015 Nov 2;125(11):4077-90. doi: 10.1172/JCI82314. Epub 2015 Sep 28.
8
Epigenetic control of HIV-1 post integration latency: implications for therapy.
Clin Epigenetics. 2015 Sep 24;7:103. doi: 10.1186/s13148-015-0137-6. eCollection 2015.
9
The Depsipeptide Romidepsin Reverses HIV-1 Latency In Vivo.
PLoS Pathog. 2015 Sep 17;11(9):e1005142. doi: 10.1371/journal.ppat.1005142. eCollection 2015 Sep.
10
Polymeric Nanocarriers for Non-Viral Gene Delivery.
J Biomed Nanotechnol. 2015 May;11(5):739-70. doi: 10.1166/jbn.2015.2069.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验