Suppr超能文献

近端小管特异性谷氨酰胺合成酶缺失会改变基础状态及酸中毒刺激下的氨代谢。

Proximal tubule-specific glutamine synthetase deletion alters basal and acidosis-stimulated ammonia metabolism.

作者信息

Lee Hyun-Wook, Osis Gunars, Handlogten Mary E, Lamers Wouter H, Chaudhry Farrukh A, Verlander Jill W, Weiner I David

机构信息

Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida;

Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands;

出版信息

Am J Physiol Renal Physiol. 2016 Jun 1;310(11):F1229-42. doi: 10.1152/ajprenal.00547.2015. Epub 2016 Mar 23.

Abstract

Glutamine synthetase (GS) catalyzes the recycling of NH4 (+) with glutamate to form glutamine. GS is highly expressed in the renal proximal tubule (PT), suggesting ammonia recycling via GS could decrease net ammoniagenesis and thereby limit ammonia available for net acid excretion. The purpose of the present study was to determine the role of PT GS in ammonia metabolism under basal conditions and during metabolic acidosis. We generated mice with PT-specific GS deletion (PT-GS-KO) using Cre-loxP techniques. Under basal conditions, PT-GS-KO increased urinary ammonia excretion significantly. Increased ammonia excretion occurred despite decreased expression of key proteins involved in renal ammonia generation. After the induction of metabolic acidosis, the ability to increase ammonia excretion was impaired significantly by PT-GS-KO. The blunted increase in ammonia excretion occurred despite greater expression of multiple components of ammonia generation, including SN1 (Slc38a3), phosphate-dependent glutaminase, phosphoenolpyruvate carboxykinase, and Na(+)-coupled electrogenic bicarbonate cotransporter. We conclude that 1) GS-mediated ammonia recycling in the PT contributes to both basal and acidosis-stimulated ammonia metabolism and 2) adaptive changes in other proteins involved in ammonia metabolism occur in response to PT-GS-KO and cause an underestimation of the role of PT GS expression.

摘要

谷氨酰胺合成酶(GS)催化NH4(+)与谷氨酸的再循环以形成谷氨酰胺。GS在肾近端小管(PT)中高度表达,这表明通过GS进行的氨再循环可减少净氨生成,从而限制可用于净酸排泄的氨。本研究的目的是确定基础条件下和代谢性酸中毒期间PT GS在氨代谢中的作用。我们使用Cre-loxP技术生成了PT特异性GS缺失的小鼠(PT-GS-KO)。在基础条件下,PT-GS-KO显著增加尿氨排泄。尽管参与肾脏氨生成的关键蛋白表达降低,但氨排泄仍增加。在诱导代谢性酸中毒后,PT-GS-KO显著损害了增加氨排泄的能力。尽管氨生成的多个组分(包括SN1(Slc38a3)、磷酸依赖性谷氨酰胺酶、磷酸烯醇丙酮酸羧激酶和Na(+)偶联的电生性碳酸氢根共转运体)表达增加,但氨排泄的增加仍受到抑制。我们得出结论:1)PT中GS介导的氨再循环有助于基础状态和酸中毒刺激下的氨代谢;2)参与氨代谢的其他蛋白会因PT-GS-KO发生适应性变化,从而导致对PT GS表达作用的低估。

相似文献

2
Acid-base effects of combined renal deletion of NBCe1-A and NBCe1-B.联合肾 NBCe1-A 和 NBCe1-B 缺失对酸碱平衡的影响。
Am J Physiol Renal Physiol. 2022 Feb 1;322(2):F208-F224. doi: 10.1152/ajprenal.00358.2021. Epub 2022 Jan 10.
6
NBCe1-A is required for the renal ammonia and K response to hypokalemia.NBCe1-A 对于低钾血症时肾脏氨和钾的反应是必需的。
Am J Physiol Renal Physiol. 2020 Feb 1;318(2):F402-F421. doi: 10.1152/ajprenal.00481.2019. Epub 2019 Dec 16.
7
Role of the renal androgen receptor in sex differences in ammonia metabolism.肾雄激素受体在氨代谢性别差异中的作用。
Am J Physiol Renal Physiol. 2021 Nov 1;321(5):F629-F644. doi: 10.1152/ajprenal.00260.2021. Epub 2021 Oct 4.
8
NBCe1 expression is required for normal renal ammonia metabolism.正常的肾脏氨代谢需要NBCe1的表达。
Am J Physiol Renal Physiol. 2015 Oct 1;309(7):F658-66. doi: 10.1152/ajprenal.00219.2015. Epub 2015 Jul 29.
9
Differences in acidosis-stimulated renal ammonia metabolism in the male and female kidney.男女肾脏酸中毒刺激下的氨代谢差异。
Am J Physiol Renal Physiol. 2019 Oct 1;317(4):F890-F905. doi: 10.1152/ajprenal.00244.2019. Epub 2019 Aug 7.
10
Role of the Rhesus glycoprotein, Rh B glycoprotein, in renal ammonia excretion.恒河猴糖蛋白(Rh B 糖蛋白)在肾脏氨排泄中的作用。
Am J Physiol Renal Physiol. 2010 Nov;299(5):F1065-77. doi: 10.1152/ajprenal.00277.2010. Epub 2010 Aug 18.

引用本文的文献

1
Lack of a role of NHE4 in renal ammonia metabolism.NHE4在肾脏氨代谢中无作用。
Am J Physiol Renal Physiol. 2025 Jun 1;328(6):F752-F765. doi: 10.1152/ajprenal.00044.2025. Epub 2025 Apr 16.
5
Acid-base effects of combined renal deletion of NBCe1-A and NBCe1-B.联合肾 NBCe1-A 和 NBCe1-B 缺失对酸碱平衡的影响。
Am J Physiol Renal Physiol. 2022 Feb 1;322(2):F208-F224. doi: 10.1152/ajprenal.00358.2021. Epub 2022 Jan 10.
6
Role of the renal androgen receptor in sex differences in ammonia metabolism.肾雄激素受体在氨代谢性别差异中的作用。
Am J Physiol Renal Physiol. 2021 Nov 1;321(5):F629-F644. doi: 10.1152/ajprenal.00260.2021. Epub 2021 Oct 4.
8
Testosterone modulates renal ammonia metabolism.睾酮调节肾脏氨代谢。
Am J Physiol Renal Physiol. 2020 Apr 1;318(4):F922-F935. doi: 10.1152/ajprenal.00560.2019. Epub 2020 Mar 2.
9
NBCe1-A is required for the renal ammonia and K response to hypokalemia.NBCe1-A 对于低钾血症时肾脏氨和钾的反应是必需的。
Am J Physiol Renal Physiol. 2020 Feb 1;318(2):F402-F421. doi: 10.1152/ajprenal.00481.2019. Epub 2019 Dec 16.
10
Differences in acidosis-stimulated renal ammonia metabolism in the male and female kidney.男女肾脏酸中毒刺激下的氨代谢差异。
Am J Physiol Renal Physiol. 2019 Oct 1;317(4):F890-F905. doi: 10.1152/ajprenal.00244.2019. Epub 2019 Aug 7.

本文引用的文献

1
NBCe1 expression is required for normal renal ammonia metabolism.正常的肾脏氨代谢需要NBCe1的表达。
Am J Physiol Renal Physiol. 2015 Oct 1;309(7):F658-66. doi: 10.1152/ajprenal.00219.2015. Epub 2015 Jul 29.
2
Effect of dietary protein restriction on renal ammonia metabolism.饮食蛋白质限制对肾脏氨代谢的影响。
Am J Physiol Renal Physiol. 2015 Jun 15;308(12):F1463-73. doi: 10.1152/ajprenal.00077.2015. Epub 2015 Apr 29.
3
Urea and Ammonia Metabolism and the Control of Renal Nitrogen Excretion.尿素与氨的代谢及肾脏氮排泄的调控
Clin J Am Soc Nephrol. 2015 Aug 7;10(8):1444-58. doi: 10.2215/CJN.10311013. Epub 2014 Jul 30.
4
Ammonia transport in the kidney by Rhesus glycoproteins.肾脏中 Rh 糖蛋白介导的氨转运。
Am J Physiol Renal Physiol. 2014 May 15;306(10):F1107-20. doi: 10.1152/ajprenal.00013.2014. Epub 2014 Mar 19.
6
Proximal tubule function and response to acidosis.近端小管功能及对酸中毒的反应。
Clin J Am Soc Nephrol. 2014 Sep 5;9(9):1627-38. doi: 10.2215/CJN.10391012. Epub 2013 Aug 1.
10
Renal ammonia metabolism and transport.肾脏氨代谢与转运。
Compr Physiol. 2013 Jan;3(1):201-20. doi: 10.1002/cphy.c120010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验