Lee Hyun-Wook, Osis Gunars, Handlogten Mary E, Lamers Wouter H, Chaudhry Farrukh A, Verlander Jill W, Weiner I David
Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida;
Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands;
Am J Physiol Renal Physiol. 2016 Jun 1;310(11):F1229-42. doi: 10.1152/ajprenal.00547.2015. Epub 2016 Mar 23.
Glutamine synthetase (GS) catalyzes the recycling of NH4 (+) with glutamate to form glutamine. GS is highly expressed in the renal proximal tubule (PT), suggesting ammonia recycling via GS could decrease net ammoniagenesis and thereby limit ammonia available for net acid excretion. The purpose of the present study was to determine the role of PT GS in ammonia metabolism under basal conditions and during metabolic acidosis. We generated mice with PT-specific GS deletion (PT-GS-KO) using Cre-loxP techniques. Under basal conditions, PT-GS-KO increased urinary ammonia excretion significantly. Increased ammonia excretion occurred despite decreased expression of key proteins involved in renal ammonia generation. After the induction of metabolic acidosis, the ability to increase ammonia excretion was impaired significantly by PT-GS-KO. The blunted increase in ammonia excretion occurred despite greater expression of multiple components of ammonia generation, including SN1 (Slc38a3), phosphate-dependent glutaminase, phosphoenolpyruvate carboxykinase, and Na(+)-coupled electrogenic bicarbonate cotransporter. We conclude that 1) GS-mediated ammonia recycling in the PT contributes to both basal and acidosis-stimulated ammonia metabolism and 2) adaptive changes in other proteins involved in ammonia metabolism occur in response to PT-GS-KO and cause an underestimation of the role of PT GS expression.
谷氨酰胺合成酶(GS)催化NH4(+)与谷氨酸的再循环以形成谷氨酰胺。GS在肾近端小管(PT)中高度表达,这表明通过GS进行的氨再循环可减少净氨生成,从而限制可用于净酸排泄的氨。本研究的目的是确定基础条件下和代谢性酸中毒期间PT GS在氨代谢中的作用。我们使用Cre-loxP技术生成了PT特异性GS缺失的小鼠(PT-GS-KO)。在基础条件下,PT-GS-KO显著增加尿氨排泄。尽管参与肾脏氨生成的关键蛋白表达降低,但氨排泄仍增加。在诱导代谢性酸中毒后,PT-GS-KO显著损害了增加氨排泄的能力。尽管氨生成的多个组分(包括SN1(Slc38a3)、磷酸依赖性谷氨酰胺酶、磷酸烯醇丙酮酸羧激酶和Na(+)偶联的电生性碳酸氢根共转运体)表达增加,但氨排泄的增加仍受到抑制。我们得出结论:1)PT中GS介导的氨再循环有助于基础状态和酸中毒刺激下的氨代谢;2)参与氨代谢的其他蛋白会因PT-GS-KO发生适应性变化,从而导致对PT GS表达作用的低估。