Suppr超能文献

肾脏氨代谢与转运。

Renal ammonia metabolism and transport.

机构信息

Nephrology and Hypertension Section, NF/SGVHS, Gainesville, Florida, USA.

出版信息

Compr Physiol. 2013 Jan;3(1):201-20. doi: 10.1002/cphy.c120010.

Abstract

Renal ammonia metabolism and transport mediates a central role in acid-base homeostasis. In contrast to most renal solutes, the majority of renal ammonia excretion derives from intrarenal production, not from glomerular filtration. Renal ammoniagenesis predominantly results from glutamine metabolism, which produces 2 NH4(+) and 2 HCO3(-) for each glutamine metabolized. The proximal tubule is the primary site for ammoniagenesis, but there is evidence for ammoniagenesis by most renal epithelial cells. Ammonia produced in the kidney is either excreted into the urine or returned to the systemic circulation through the renal veins. Ammonia excreted in the urine promotes acid excretion; ammonia returned to the systemic circulation is metabolized in the liver in a HCO3(-)-consuming process, resulting in no net benefit to acid-base homeostasis. Highly regulated ammonia transport by renal epithelial cells determines the proportion of ammonia excreted in the urine versus returned to the systemic circulation. The traditional paradigm of ammonia transport involving passive NH3 diffusion, protonation in the lumen and NH4(+) trapping due to an inability to cross plasma membranes is being replaced by the recognition of limited plasma membrane NH3 permeability in combination with the presence of specific NH3-transporting and NH4(+)-transporting proteins in specific renal epithelial cells. Ammonia production and transport are regulated by a variety of factors, including extracellular pH and K(+), and by several hormones, such as mineralocorticoids, glucocorticoids and angiotensin II. This coordinated process of regulated ammonia production and transport is critical for the effective maintenance of acid-base homeostasis.

摘要

肾脏氨代谢和转运在酸碱平衡中起着核心作用。与大多数肾脏溶质不同,大部分肾脏氨排泄来自于肾内生成,而不是肾小球滤过。肾氨生成主要来源于谷氨酰胺代谢,每代谢 1 个谷氨酰胺可产生 2 个 NH4(+)和 2 个 HCO3(-)。近端小管是氨生成的主要部位,但大多数肾上皮细胞也有氨生成的证据。肾脏产生的氨要么排泄到尿液中,要么通过肾静脉返回全身循环。排泄到尿液中的氨促进酸排泄;返回全身循环的氨在肝脏中被代谢,消耗 HCO3(-),对酸碱平衡没有净益处。肾上皮细胞高度调节的氨转运决定了氨排泄到尿液中的比例与返回全身循环的比例。涉及被动 NH3 扩散、管腔质子化和由于不能穿过质膜而导致 NH4(+)捕获的传统氨转运模式,正被认识到的有限质膜 NH3 通透性与特定肾上皮细胞中存在特定的 NH3 转运和 NH4(+)-转运蛋白所取代。氨的生成和转运受多种因素的调节,包括细胞外 pH 值和 K(+),以及几种激素,如醛固酮、皮质醇和血管紧张素 II。这种受调节的氨生成和转运的协调过程对有效维持酸碱平衡至关重要。

相似文献

1
Renal ammonia metabolism and transport.肾脏氨代谢与转运。
Compr Physiol. 2013 Jan;3(1):201-20. doi: 10.1002/cphy.c120010.
2
Role of NH3 and NH4+ transporters in renal acid-base transport.NH3 和 NH4+ 转运体在肾脏酸碱转运中的作用。
Am J Physiol Renal Physiol. 2011 Jan;300(1):F11-23. doi: 10.1152/ajprenal.00554.2010. Epub 2010 Nov 3.
3
5
State of knowledge on ammonia handling by the kidney.肾脏对氨的处理知识状况。
Pflugers Arch. 2024 Apr;476(4):517-531. doi: 10.1007/s00424-024-02940-1. Epub 2024 Mar 7.
8
Ammonia transport in the kidney by Rhesus glycoproteins.肾脏中 Rh 糖蛋白介导的氨转运。
Am J Physiol Renal Physiol. 2014 May 15;306(10):F1107-20. doi: 10.1152/ajprenal.00013.2014. Epub 2014 Mar 19.

引用本文的文献

1
4
Lack of a role of NHE4 in renal ammonia metabolism.NHE4在肾脏氨代谢中无作用。
Am J Physiol Renal Physiol. 2025 Jun 1;328(6):F752-F765. doi: 10.1152/ajprenal.00044.2025. Epub 2025 Apr 16.
6
A Urine pH-Ammonium Acid/Base Score and CKD Progression.尿液pH-铵酸碱评分与慢性肾脏病进展
J Am Soc Nephrol. 2024 Nov 1;35(11):1533-1545. doi: 10.1681/ASN.0000000000000447. Epub 2024 Jul 17.
8
Nanoassembly-Mediated Exendin-4 Derivatives to Decrease Renal Retention.纳米组装介导的艾塞那肽-4衍生物以减少肾脏滞留。
ACS Omega. 2024 Apr 21;9(17):18757-18765. doi: 10.1021/acsomega.3c04644. eCollection 2024 Apr 30.

本文引用的文献

1
Molecular mechanisms of acid-base sensing by the kidney.肾脏酸碱感应的分子机制。
J Am Soc Nephrol. 2012 May;23(5):774-80. doi: 10.1681/ASN.2012010029. Epub 2012 Feb 23.
2
Cellular and molecular basis of increased ammoniagenesis in potassium deprivation.钾缺乏时氨生成增加的细胞和分子基础。
Am J Physiol Renal Physiol. 2011 Nov;301(5):F969-78. doi: 10.1152/ajprenal.00010.2011. Epub 2011 Jul 27.
5
Glutamine metabolism: Role in acid-base balance*.谷氨酰胺代谢:在酸碱平衡中的作用*
Biochem Mol Biol Educ. 2004 Sep;32(5):291-304. doi: 10.1002/bmb.2004.494032050388.
6
Role of NH3 and NH4+ transporters in renal acid-base transport.NH3 和 NH4+ 转运体在肾脏酸碱转运中的作用。
Am J Physiol Renal Physiol. 2011 Jan;300(1):F11-23. doi: 10.1152/ajprenal.00554.2010. Epub 2010 Nov 3.
7
pH sensitivity of ammonium transport by Rhbg.Rhbg 介导的铵转运的 pH 敏感性。
Am J Physiol Cell Physiol. 2010 Dec;299(6):C1386-97. doi: 10.1152/ajpcell.00211.2010. Epub 2010 Sep 1.
8
Role of the Rhesus glycoprotein, Rh B glycoprotein, in renal ammonia excretion.恒河猴糖蛋白(Rh B 糖蛋白)在肾脏氨排泄中的作用。
Am J Physiol Renal Physiol. 2010 Nov;299(5):F1065-77. doi: 10.1152/ajprenal.00277.2010. Epub 2010 Aug 18.
9
Substrate specificity of Rhbg: ammonium and methyl ammonium transport.Rhbg 的底物特异性:铵根和甲铵的转运。
Am J Physiol Cell Physiol. 2010 Sep;299(3):C695-705. doi: 10.1152/ajpcell.00019.2010. Epub 2010 Jun 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验