Goel Vijay K, Nyman Edward
*Engineering Center for Orthopaedic Research Excellence (E-CORE), University of Toledo, Toledo, OH †College of Engineering, University of Toledo, Toledo, OH.
Spine (Phila Pa 1976). 2016 Apr;41 Suppl 7:S6-7. doi: 10.1097/BRS.0000000000001421.
Computational modeling with finite element analysis (FEA) is an integral component of medical device design and development. Researchers assess dimensions and stability of the experimental device; test load sharing, stresses, and strains; and analyze failures and modifications. The most important step in FEA is validation of the model. Testing should include decompression and stabilization procedures simulated in the finite element model (FEM). Prerequisites of quality FEA include a solid understanding of morphology and material properties of the model, a firm grasp of the effects of loads on body structures, and the work of a skilled bioengineer who can translate the ideas of surgeons into an appropriate FEM. With today's modern techniques-computed tomography/magnetic resonance imaging, etc.-the bioengineer moves from scan to FEM in just weeks.
有限元分析(FEA)的计算建模是医疗设备设计与开发不可或缺的组成部分。研究人员评估实验设备的尺寸和稳定性;测试负荷分担、应力和应变;并分析故障及改进情况。有限元分析中最重要的一步是模型验证。测试应包括在有限元模型(FEM)中模拟的减压和稳定程序。高质量有限元分析的先决条件包括对模型的形态学和材料特性有扎实的理解,对负荷对身体结构的影响有牢固的掌握,以及有一位能够将外科医生的想法转化为合适有限元模型的熟练生物工程师的工作。借助当今的现代技术——计算机断层扫描/磁共振成像等——生物工程师只需几周时间就能从扫描过渡到有限元模型。