Suppr超能文献

通过特征空间重映射(FSR)在富含特征的异构特征空间中进行迁移学习。

Transfer Learning across Feature-Rich Heterogeneous Feature Spaces via Feature-Space Remapping (FSR).

作者信息

Feuz Kyle D, Cook Diane J

机构信息

School of Electrical Engineering and Computer Science, Washington State University.

出版信息

ACM Trans Intell Syst Technol. 2015 Apr;6(1). doi: 10.1145/2629528.

Abstract

Transfer learning aims to improve performance on a target task by utilizing previous knowledge learned from source tasks. In this paper we introduce a novel heterogeneous transfer learning technique, Feature- Space Remapping (FSR), which transfers knowledge between domains with different feature spaces. This is accomplished without requiring typical feature-feature, feature instance, or instance-instance co-occurrence data. Instead we relate features in different feature-spaces through the construction of meta-features. We show how these techniques can utilize multiple source datasets to construct an ensemble learner which further improves performance. We apply FSR to an activity recognition problem and a document classification problem. The ensemble technique is able to outperform all other baselines and even performs better than a classifier trained using a large amount of labeled data in the target domain. These problems are especially difficult because in addition to having different feature-spaces, the marginal probability distributions and the class labels are also different. This work extends the state of the art in transfer learning by considering large transfer across dramatically different spaces.

摘要

迁移学习旨在通过利用从源任务中学到的先前知识来提高目标任务的性能。在本文中,我们介绍了一种新颖的异构迁移学习技术——特征空间重映射(FSR),它能在具有不同特征空间的域之间传递知识。这一过程无需典型的特征-特征、特征实例或实例-实例共现数据即可完成。相反,我们通过构建元特征来关联不同特征空间中的特征。我们展示了这些技术如何利用多个源数据集来构建一个集成学习器,从而进一步提高性能。我们将FSR应用于活动识别问题和文档分类问题。该集成技术能够超越所有其他基线,甚至比使用目标域中大量标记数据训练的分类器表现更好。这些问题尤其困难,因为除了具有不同的特征空间外,边际概率分布和类别标签也不同。这项工作通过考虑在截然不同的空间之间进行大规模迁移,扩展了迁移学习的技术水平。

相似文献

2
Learning Transferred Weights From Co-Occurrence Data for Heterogeneous Transfer Learning.从共现数据中学习转移权重以进行异质迁移学习。
IEEE Trans Neural Netw Learn Syst. 2016 Nov;27(11):2187-2200. doi: 10.1109/TNNLS.2015.2472457. Epub 2015 Sep 4.
4
Cross-View Action Recognition Over Heterogeneous Feature Spaces.跨视图动作识别的异构特征空间。
IEEE Trans Image Process. 2015 Nov;24(11):4096-108. doi: 10.1109/TIP.2015.2445293. Epub 2015 Jun 12.
8
Dual Alignment for Partial Domain Adaptation.双对齐用于部分领域自适应。
IEEE Trans Cybern. 2021 Jul;51(7):3404-3416. doi: 10.1109/TCYB.2020.2983337. Epub 2021 Jun 23.
9
Heterogeneous Multidomain Recommender System Through Adversarial Learning.基于对抗学习的异构多域推荐系统
IEEE Trans Neural Netw Learn Syst. 2023 Nov;34(11):8965-8977. doi: 10.1109/TNNLS.2022.3154345. Epub 2023 Oct 27.
10
Semantic Correlation Transfer for Heterogeneous Domain Adaptation.用于异构域适应的语义关联转移
IEEE Trans Neural Netw Learn Syst. 2025 Mar;36(3):4233-4245. doi: 10.1109/TNNLS.2022.3199619. Epub 2025 Feb 28.

引用本文的文献

6
Collegial Activity Learning between Heterogeneous Sensors.异构传感器之间的合作活动学习
Knowl Inf Syst. 2017 Nov;53(2):337-364. doi: 10.1007/s10115-017-1043-3. Epub 2017 Mar 27.

本文引用的文献

1
Transfer Learning for Activity Recognition: A Survey.用于活动识别的迁移学习:一项综述。
Knowl Inf Syst. 2013 Sep 1;36(3):537-556. doi: 10.1007/s10115-013-0665-3.
2
Domain adaptation via transfer component analysis.通过迁移成分分析实现领域自适应。
IEEE Trans Neural Netw. 2011 Feb;22(2):199-210. doi: 10.1109/TNN.2010.2091281. Epub 2010 Nov 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验