Suppr超能文献

可忽略相互作用的检验:一种连贯且稳健的方法。

Testing for negligible interaction: A coherent and robust approach.

作者信息

Cribbie Robert A, Ragoonanan Chantal, Counsell Alyssa

机构信息

Department of Psychology, York University, Toronto, Ontario, Canada.

出版信息

Br J Math Stat Psychol. 2016 May;69(2):159-74. doi: 10.1111/bmsp.12066. Epub 2016 Mar 29.

Abstract

Researchers often want to demonstrate a lack of interaction between two categorical predictors on an outcome. To justify a lack of interaction, researchers typically accept the null hypothesis of no interaction from a conventional analysis of variance (ANOVA). This method is inappropriate as failure to reject the null hypothesis does not provide statistical evidence to support a lack of interaction. This study proposes a bootstrap-based intersection-union test for negligible interaction that provides coherent decisions between the omnibus test and post hoc interaction contrast tests and is robust to violations of the normality and variance homogeneity assumptions. Further, a multiple comparison strategy for testing interaction contrasts following a non-significant omnibus test is proposed. Our simulation study compared the Type I error control, omnibus power and per-contrast power of the proposed approach to the non-centrality-based negligible interaction test of Cheng and Shao (2007, Statistica Sinica, 17, 1441). For 2 × 2 designs, the empirical Type I error rates of the Cheng and Shao test were very close to the nominal α level when the normality and variance homogeneity assumptions were satisfied; however, only our proposed bootstrapping approach was satisfactory under non-normality and/or variance heterogeneity. In general a × b designs, although the omnibus Cheng and Shao test, as expected, is the most powerful, it is not robust to assumption violation and results in incoherent omnibus and interaction contrast decisions that are not possible with the intersection-union approach.

摘要

研究人员常常希望证明两个分类预测变量在一个结果上不存在交互作用。为了证明不存在交互作用,研究人员通常会接受传统方差分析(ANOVA)中无交互作用的零假设。这种方法并不恰当,因为未能拒绝零假设并不能提供支持不存在交互作用的统计证据。本研究提出了一种基于自助法的交集并集检验,用于检验可忽略不计的交互作用,该检验在综合检验和事后交互作用对比检验之间能提供一致的决策,并且对违反正态性和方差齐性假设具有稳健性。此外,还提出了一种在综合检验不显著后用于检验交互作用对比的多重比较策略。我们的模拟研究将所提出方法的第一类错误控制、综合检验功效和每个对比的功效与Cheng和Shao(2007年,《统计学报》,17卷,1441页)基于非中心性的可忽略不计交互作用检验进行了比较。对于2×2设计,当正态性和方差齐性假设得到满足时,Cheng和Shao检验的经验第一类错误率非常接近名义α水平;然而,只有我们提出的自助法在非正态和/或方差非齐性情况下才令人满意。在一般的a×b设计中,尽管正如预期的那样,Cheng和Shao的综合检验是最有功效的,但它对假设违反不具有稳健性,并且会导致综合检验和交互作用对比决策不一致,而交集并集方法则不会出现这种情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验