Suppr超能文献

甲硫氨酸转氨途径通过调节GCN5乙酰转移酶和PGC-1α转录共激活因子来控制肝脏葡萄糖代谢。

The Methionine Transamination Pathway Controls Hepatic Glucose Metabolism through Regulation of the GCN5 Acetyltransferase and the PGC-1α Transcriptional Coactivator.

作者信息

Tavares Clint D J, Sharabi Kfir, Dominy John E, Lee Yoonjin, Isasa Marta, Orozco Jose M, Jedrychowski Mark P, Kamenecka Theodore M, Griffin Patrick R, Gygi Steven P, Puigserver Pere

机构信息

From the Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 and.

Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 and.

出版信息

J Biol Chem. 2016 May 13;291(20):10635-45. doi: 10.1074/jbc.M115.706200. Epub 2016 Mar 28.

Abstract

Methionine is an essential sulfur amino acid that is engaged in key cellular functions such as protein synthesis and is a precursor for critical metabolites involved in maintaining cellular homeostasis. In mammals, in response to nutrient conditions, the liver plays a significant role in regulating methionine concentrations by altering its flux through the transmethylation, transsulfuration, and transamination metabolic pathways. A comprehensive understanding of how hepatic methionine metabolism intersects with other regulatory nutrient signaling and transcriptional events is, however, lacking. Here, we show that methionine and derived-sulfur metabolites in the transamination pathway activate the GCN5 acetyltransferase promoting acetylation of the transcriptional coactivator PGC-1α to control hepatic gluconeogenesis. Methionine was the only essential amino acid that rapidly induced PGC-1α acetylation through activating the GCN5 acetyltransferase. Experiments employing metabolic pathway intermediates revealed that methionine transamination, and not the transmethylation or transsulfuration pathways, contributed to methionine-induced PGC-1α acetylation. Moreover, aminooxyacetic acid, a transaminase inhibitor, was able to potently suppress PGC-1α acetylation stimulated by methionine, which was accompanied by predicted alterations in PGC-1α-mediated gluconeogenic gene expression and glucose production in primary murine hepatocytes. Methionine administration in mice likewise induced hepatic PGC-1α acetylation, suppressed the gluconeogenic gene program, and lowered glycemia, indicating that a similar phenomenon occurs in vivo These results highlight a communication between methionine metabolism and PGC-1α-mediated hepatic gluconeogenesis, suggesting that influencing methionine metabolic flux has the potential to be therapeutically exploited for diabetes treatment.

摘要

蛋氨酸是一种必需的含硫氨基酸,参与蛋白质合成等关键细胞功能,并且是维持细胞内稳态所涉及的关键代谢物的前体。在哺乳动物中,肝脏会根据营养状况,通过改变蛋氨酸在转甲基、转硫和转氨代谢途径中的通量,在调节蛋氨酸浓度方面发挥重要作用。然而,目前尚缺乏对肝脏蛋氨酸代谢如何与其他调节性营养信号和转录事件相互作用的全面了解。在此,我们表明转氨途径中的蛋氨酸及其衍生的含硫代谢物会激活GCN5乙酰转移酶,促进转录共激活因子PGC-1α的乙酰化,从而控制肝脏糖异生。蛋氨酸是唯一能通过激活GCN5乙酰转移酶快速诱导PGC-1α乙酰化的必需氨基酸。利用代谢途径中间体进行的实验表明,蛋氨酸转氨作用而非转甲基或转硫途径,促成了蛋氨酸诱导的PGC-1α乙酰化。此外,转氨酶抑制剂氨基氧乙酸能够有效抑制蛋氨酸刺激的PGC-1α乙酰化,这伴随着原代小鼠肝细胞中PGC-1α介导的糖异生基因表达和葡萄糖生成的预期变化。给小鼠注射蛋氨酸同样会诱导肝脏PGC-1α乙酰化,抑制糖异生基因程序,并降低血糖,表明类似现象在体内也会发生。这些结果突显了蛋氨酸代谢与PGC-1α介导的肝脏糖异生之间的联系,提示影响蛋氨酸代谢通量可能具有治疗糖尿病的潜在用途。

相似文献

4
The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis.
Mol Cell. 2012 Dec 28;48(6):900-13. doi: 10.1016/j.molcel.2012.09.030. Epub 2012 Nov 8.
5
The SMILE transcriptional corepressor inhibits cAMP response element-binding protein (CREB)-mediated transactivation of gluconeogenic genes.
J Biol Chem. 2018 Aug 24;293(34):13125-13133. doi: 10.1074/jbc.RA118.002196. Epub 2018 Jun 27.
7
PCAF improves glucose homeostasis by suppressing the gluconeogenic activity of PGC-1α.
Cell Rep. 2014 Dec 24;9(6):2250-62. doi: 10.1016/j.celrep.2014.11.029. Epub 2014 Dec 11.
9
Decreased Gluconeogenesis in the Absence of Cystathionine Gamma-Lyase and the Underlying Mechanisms.
Antioxid Redox Signal. 2016 Jan 20;24(3):129-40. doi: 10.1089/ars.2015.6369. Epub 2015 Sep 24.
10
Selective Chemical Inhibition of PGC-1α Gluconeogenic Activity Ameliorates Type 2 Diabetes.
Cell. 2017 Mar 23;169(1):148-160.e15. doi: 10.1016/j.cell.2017.03.001.

引用本文的文献

1
Pathological role of methionine in the initiation and progression of biliary atresia.
Front Pediatr. 2023 Sep 12;11:1263836. doi: 10.3389/fped.2023.1263836. eCollection 2023.
2
Methionine-Mediated Regulation of Intestinal Lipid Transportation Induced by High-Fat Diet in Rice Field Eel ().
Aquac Nutr. 2023 Mar 16;2023:5533414. doi: 10.1155/2023/5533414. eCollection 2023.
4
Heat Stress Affects Faecal Microbial and Metabolic Alterations of Rabbits.
Front Microbiol. 2022 Feb 28;12:817615. doi: 10.3389/fmicb.2021.817615. eCollection 2021.
6
GCN5 acetyltransferase in cellular energetic and metabolic processes.
Biochim Biophys Acta Gene Regul Mech. 2021 Feb;1864(2):194626. doi: 10.1016/j.bbagrm.2020.194626. Epub 2020 Aug 19.
9
Metabolic Fingerprint of Turner Syndrome.
J Clin Med. 2020 Mar 2;9(3):664. doi: 10.3390/jcm9030664.
10
Acetyltransferase GCN5 regulates autophagy and lysosome biogenesis by targeting TFEB.
EMBO Rep. 2020 Jan 7;21(1):e48335. doi: 10.15252/embr.201948335. Epub 2019 Nov 21.

本文引用的文献

1
Methionine restriction and life-span control.
Ann N Y Acad Sci. 2016 Jan;1363:116-24. doi: 10.1111/nyas.12973. Epub 2015 Dec 10.
3
Allosteric regulation of a protein acetyltransferase in Micromonospora aurantiaca by the amino acids cysteine and arginine.
J Biol Chem. 2014 Sep 26;289(39):27034-27045. doi: 10.1074/jbc.M114.579078. Epub 2014 Aug 14.
4
Functions of SAGA in development and disease.
Epigenomics. 2014 Jun;6(3):329-39. doi: 10.2217/epi.14.22.
5
Mechanisms of increased in vivo insulin sensitivity by dietary methionine restriction in mice.
Diabetes. 2014 Nov;63(11):3721-33. doi: 10.2337/db14-0464. Epub 2014 Jun 19.
6
Cyclin D1-Cdk4 controls glucose metabolism independently of cell cycle progression.
Nature. 2014 Jun 26;510(7506):547-51. doi: 10.1038/nature13267. Epub 2014 May 25.
9
The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis.
Mol Cell. 2012 Dec 28;48(6):900-13. doi: 10.1016/j.molcel.2012.09.030. Epub 2012 Nov 8.
10
Methionine excess in diet induces acute lethal hepatitis in mice lacking cystathionine γ-lyase, an animal model of cystathioninuria.
Free Radic Biol Med. 2012 May 1;52(9):1716-26. doi: 10.1016/j.freeradbiomed.2012.02.033. Epub 2012 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验