School of Mechanical Engineering, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
High-Temperature Energy Materials Research Center, Korea Institute of Science and Technology (KIST) , 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.
ACS Appl Mater Interfaces. 2016 Apr 13;8(14):9097-103. doi: 10.1021/acsami.6b00512. Epub 2016 Mar 30.
In this study, we used a compositionally gradient anode functional layer (AFL) consisting of Ni-BaCe(0.5)Zr(0.35)Y(0.15)O(3-δ) (BCZY) with increasing BCZY contents toward the electrolyte-anode interface for high-performance protonic ceramic fuel cells. It is identified that conventional homogeneous AFLs fail to stably accommodate a thin film of BCZY electrolyte. In contrast, a dense 2 μm thick BCZY electrolyte was successfully deposited onto the proposed gradient AFL with improved adhesion. A fuel cell containing this thin electrolyte showed a promising maximum peak power density of 635 mW cm(-2) at 600 °C, with an open-circuit voltage of over 1 V. Impedance analysis confirmed that minimizing the electrolyte thickness is essential for achieving a high power output, suggesting that the anode structure is important in stably accommodating thin electrolytes.
在这项研究中,我们使用了一种组成梯度阳极功能层(AFL),由 Ni-BaCe(0.5)Zr(0.35)Y(0.15)O(3-δ)(BCZY)组成,BCZY 含量从电解质-阳极界面向增加,用于高性能质子陶瓷燃料电池。已经确定,传统的均匀 AFL 无法稳定地容纳薄的 BCZY 电解质膜。相比之下,成功地将致密的 2 μm 厚 BCZY 电解质沉积在改进后的梯度 AFL 上,附着力得到提高。含有这种薄电解质的燃料电池在 600°C 时表现出有前途的最大峰值功率密度为 635 mW cm(-2),开路电压超过 1 V。阻抗分析证实,最小化电解质厚度对于实现高功率输出至关重要,这表明阳极结构对于稳定容纳薄电解质很重要。