Suppr超能文献

通过纳米级薄膜钆掺杂二氧化铈中间层改善阴极反应的质子传导型微固体氧化物燃料电池。

Proton-conducting Micro-solid Oxide Fuel Cells with Improved Cathode Reactions by a Nanoscale Thin Film Gadolinium-doped Ceria Interlayer.

作者信息

Li Yong, Wang Shijie, Su Pei-Chen

机构信息

School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.

Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634.

出版信息

Sci Rep. 2016 Feb 29;6:22369. doi: 10.1038/srep22369.

Abstract

An 8 nm-thick gadolinium-doped ceria (GDC) layer was inserted as a cathodic interlayer between the nanoscale proton-conducting yttrium-doped barium zirconate (BZY) electrolyte and the porous platinum cathode of a micro-solid oxide fuel cell (μ-SOFC), which has effectively improved the cathode reaction kinetics and rendered high cell power density. The addition of the GDC interlayer significantly reduced the cathodic activation loss and increased the peak power density of the μ-SOFC by 33% at 400 °C. The peak power density reached 445 mW/cm(2) at 425 °C, which is the highest among the reported μ-SOFCs using proton-conducting electrolytes. The impressive performance was attributed to the mixed protonic and oxygen ionic conducting properties of the nano-granular GDC, and also to the high densities of grain boundaries and lattice defects in GDC interlayer that favored the oxygen incorporation and transportation during the oxygen reduction reaction (ORR) and the water evolution reaction at cathode.

摘要

在纳米级质子传导钇掺杂锆酸钡(BZY)电解质与微固体氧化物燃料电池(μ-SOFC)的多孔铂阴极之间插入了一层8纳米厚的钆掺杂二氧化铈(GDC)作为阴极中间层,这有效地改善了阴极反应动力学并提高了电池的功率密度。添加GDC中间层显著降低了阴极活化损失,并使μ-SOFC在400°C时的峰值功率密度提高了33%。在425°C时,峰值功率密度达到445毫瓦/平方厘米,这是已报道的使用质子传导电解质的μ-SOFC中最高的。这种令人印象深刻的性能归因于纳米颗粒GDC的质子和氧离子混合传导特性,也归因于GDC中间层中高密度的晶界和晶格缺陷,这些有利于氧还原反应(ORR)和阴极析氢反应过程中的氧掺入和传输。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验