Suppr超能文献

使用步态信号动力学参数和集成学习算法对与儿童发育相关的步幅模式进行分析和分类

Analysis and Classification of Stride Patterns Associated with Children Development Using Gait Signal Dynamics Parameters and Ensemble Learning Algorithms.

作者信息

Wu Meihong, Liao Lifang, Luo Xin, Ye Xiaoquan, Yao Yuchen, Chen Pinnan, Shi Lei, Huang Hui, Wu Yunfeng

机构信息

School of Information Science and Technology, Xiamen University, 422 Si Ming South Road, Xiamen, Fujian 361005, China.

Department of Orthopedics, Zhongshan Hospital, Xiamen University, 201 Hubin South Road, Xiamen, Fujian 361004, China.

出版信息

Biomed Res Int. 2016;2016:9246280. doi: 10.1155/2016/9246280. Epub 2016 Feb 29.

Abstract

Measuring stride variability and dynamics in children is useful for the quantitative study of gait maturation and neuromotor development in childhood and adolescence. In this paper, we computed the sample entropy (SampEn) and average stride interval (ASI) parameters to quantify the stride series of 50 gender-matched children participants in three age groups. We also normalized the SampEn and ASI values by leg length and body mass for each participant, respectively. Results show that the original and normalized SampEn values consistently decrease over the significance level of the Mann-Whitney U test (p < 0.01) in children of 3-14 years old, which indicates the stride irregularity has been significantly ameliorated with the body growth. The original and normalized ASI values are also significantly changing when comparing between any two groups of young (aged 3-5 years), middle (aged 6-8 years), and elder (aged 10-14 years) children. Such results suggest that healthy children may better modulate their gait cadence rhythm with the development of their musculoskeletal and neurological systems. In addition, the AdaBoost.M2 and Bagging algorithms were used to effectively distinguish the children's gait patterns. These ensemble learning algorithms both provided excellent gait classification results in terms of overall accuracy (≥90%), recall (≥0.8), and precision (≥0.8077).

摘要

测量儿童的步幅变异性和动力学对于儿童期和青少年期步态成熟和神经运动发育的定量研究很有用。在本文中,我们计算了样本熵(SampEn)和平均步幅间隔(ASI)参数,以量化三个年龄组中50名性别匹配的儿童参与者的步幅序列。我们还分别根据每个参与者的腿长和体重对SampEn和ASI值进行了归一化。结果表明,在3至14岁儿童中,原始和归一化的SampEn值在曼-惠特尼U检验的显著性水平(p < 0.01)上持续下降,这表明随着身体生长,步幅不规则性得到了显著改善。在比较任何两组幼儿(3至5岁)、中年儿童(6至8岁)和年长儿童(10至14岁)时,原始和归一化的ASI值也有显著变化。这些结果表明,健康儿童可能随着其肌肉骨骼和神经系统的发育更好地调节其步态节奏。此外,使用AdaBoost.M2和Bagging算法有效地区分了儿童的步态模式。这些集成学习算法在总体准确率(≥90%)、召回率(≥0.8)和精确率(≥0.8077)方面都提供了出色的步态分类结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c413/4789376/5408a89691f5/BMRI2016-9246280.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验