Suppr超能文献

基于随机动力系统的基因表达模型揭示了基因调控网络的模块化特性。

A model of gene expression based on random dynamical systems reveals modularity properties of gene regulatory networks.

作者信息

Antoneli Fernando, Ferreira Renata C, Briones Marcelo R S

机构信息

Departamento de Informática em Saúde, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brasil; Laboratório de Genômica Evolutiva e Biocomplexidade, EPM, UNIFESP, Ed. Pesquisas II, Rua Pedro de Toledo 669, CEP 04039-032, São Paulo, Brasil.

College of Medicine, Pennsylvania State University (Hershey), PA, USA.

出版信息

Math Biosci. 2016 Jun;276:82-100. doi: 10.1016/j.mbs.2016.03.008. Epub 2016 Mar 30.

Abstract

Here we propose a new approach to modeling gene expression based on the theory of random dynamical systems (RDS) that provides a general coupling prescription between the nodes of any given regulatory network given the dynamics of each node is modeled by a RDS. The main virtues of this approach are the following: (i) it provides a natural way to obtain arbitrarily large networks by coupling together simple basic pieces, thus revealing the modularity of regulatory networks; (ii) the assumptions about the stochastic processes used in the modeling are fairly general, in the sense that the only requirement is stationarity; (iii) there is a well developed mathematical theory, which is a blend of smooth dynamical systems theory, ergodic theory and stochastic analysis that allows one to extract relevant dynamical and statistical information without solving the system; (iv) one may obtain the classical rate equations form the corresponding stochastic version by averaging the dynamic random variables (small noise limit). It is important to emphasize that unlike the deterministic case, where coupling two equations is a trivial matter, coupling two RDS is non-trivial, specially in our case, where the coupling is performed between a state variable of one gene and the switching stochastic process of another gene and, hence, it is not a priori true that the resulting coupled system will satisfy the definition of a random dynamical system. We shall provide the necessary arguments that ensure that our coupling prescription does indeed furnish a coupled regulatory network of random dynamical systems. Finally, the fact that classical rate equations are the small noise limit of our stochastic model ensures that any validation or prediction made on the basis of the classical theory is also a validation or prediction of our model. We illustrate our framework with some simple examples of single-gene system and network motifs.

摘要

在此,我们基于随机动力系统(RDS)理论提出一种新的基因表达建模方法。给定每个节点的动力学由RDS建模,该方法能为任何给定调控网络的节点提供一种通用的耦合规则。此方法的主要优点如下:(i)它提供了一种自然的方式,通过将简单的基本部分耦合在一起获得任意大的网络,从而揭示调控网络的模块化;(ii)建模中使用的关于随机过程的假设相当普遍,唯一的要求是平稳性;(iii)有一个成熟的数学理论,它融合了光滑动力系统理论、遍历理论和随机分析,使人们无需求解系统就能提取相关的动力学和统计信息;(iv)通过对动态随机变量求平均(小噪声极限),可以从相应的随机版本得到经典速率方程。需要强调的是,与确定性情况不同,在确定性情况下耦合两个方程是件小事,而耦合两个RDS并非易事,特别是在我们的情况中,耦合是在一个基因的状态变量和另一个基因的开关随机过程之间进行的,因此,所得的耦合系统是否满足随机动力系统的定义并非先验成立。我们将提供必要的论证,以确保我们的耦合规则确实能构建一个随机动力系统的耦合调控网络。最后,经典速率方程是我们随机模型的小噪声极限这一事实确保了基于经典理论所做的任何验证或预测也是对我们模型的验证或预测。我们用单基因系统和网络基序的一些简单例子来说明我们的框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验