Suppr超能文献

表皮生长因子受体(EGFR)和转化生长因子-β(TGF-β)信号通路中的突变对果蝇翅膀形状、大小的性别二态性及异速生长的性别限制效应。

The sex-limited effects of mutations in the EGFR and TGF-β signaling pathways on shape and size sexual dimorphism and allometry in the Drosophila wing.

作者信息

Testa Nicholas D, Dworkin Ian

机构信息

Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.

Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, USA.

出版信息

Dev Genes Evol. 2016 Jun;226(3):159-71. doi: 10.1007/s00427-016-0534-7. Epub 2016 Apr 1.

Abstract

Much of the morphological diversity in nature-including among sexes within a species-is a direct consequence of variation in size and shape. However, disentangling variation in sexual dimorphism for both shape (SShD), size (SSD), and their relationship with one another remains complex. Understanding how genetic variation influences both size and shape together, and how this in turn influences SSD and SShD, is challenging. In this study, we utilize Drosophila wing size and shape as a model system to investigate how mutations influence size and shape as modulated by sex. Previous work has demonstrated that mutations in epidermal growth factor receptor (EGFR) and transforming growth factor-β (TGF-β) signaling components can influence both wing size and shape. In this study, we re-analyze this data to specifically address how they impact the relationship between size and shape in a sex-specific manner, in turn altering the pattern of sexual dimorphism. While most mutations influence shape overall, only a subset have a genotypic specific effect that influences SShD. Furthermore, while we observe sex-specific patterns of allometric shape variation, the effects of most mutations on allometry tend to be small. We discuss this within the context of using mutational analysis to understand sexual size and shape dimorphism.

摘要

自然界中许多形态多样性——包括同一物种内不同性别之间的形态多样性——都是大小和形状变化的直接结果。然而,区分形状(SShD)、大小(SSD)的性二态性变化以及它们彼此之间的关系仍然很复杂。了解基因变异如何同时影响大小和形状,以及这又如何反过来影响SSD和SShD,是具有挑战性的。在本研究中,我们利用果蝇翅膀的大小和形状作为模型系统,来研究突变如何影响受性别调节的大小和形状。先前的研究表明,表皮生长因子受体(EGFR)和转化生长因子-β(TGF-β)信号成分的突变可同时影响翅膀的大小和形状。在本研究中,我们重新分析这些数据,以具体探讨它们如何以性别特异性方式影响大小与形状之间的关系,进而改变性二态性模式。虽然大多数突变总体上影响形状,但只有一部分具有影响SShD的基因型特异性效应。此外,虽然我们观察到了异速生长形状变化的性别特异性模式,但大多数突变对异速生长的影响往往较小。我们在利用突变分析来理解性别大小和形状二态性的背景下讨论了这一点。

相似文献

2
Evolution of sexual dimorphism of wing shape in the Drosophila melanogaster subgroup.
BMC Evol Biol. 2009 May 20;9:110. doi: 10.1186/1471-2148-9-110.
5
Allometry constrains the evolution of sexual dimorphism in Drosophila across 33 million years of divergence.
Evolution. 2021 May;75(5):1117-1131. doi: 10.1111/evo.14200. Epub 2021 Apr 6.
7
Sex-dependent and sex-independent regulatory systems of size variation in natural populations.
Mol Syst Biol. 2019 Nov;15(11):e9012. doi: 10.15252/msb.20199012.
10
Association between nucleotide variation in Egfr and wing shape in Drosophila melanogaster.
Genetics. 2004 Jul;167(3):1187-98. doi: 10.1534/genetics.103.021766.

引用本文的文献

1
MAPPER: An Open-Source, High-Dimensional Image Analysis Pipeline Unmasks Differential Regulation of Wing Features.
Front Genet. 2022 Apr 11;13:869719. doi: 10.3389/fgene.2022.869719. eCollection 2022.
2
The gut-microbiota-brain axis in autism: what Drosophila models can offer?
J Neurodev Disord. 2021 Sep 15;13(1):37. doi: 10.1186/s11689-021-09378-x.
4
Drosophila models of pathogenic copy-number variant genes show global and non-neuronal defects during development.
PLoS Genet. 2020 Jun 24;16(6):e1008792. doi: 10.1371/journal.pgen.1008792. eCollection 2020 Jun.
5
Why does allometry evolve so slowly?
Integr Comp Biol. 2019 Nov 1;59(5):1429-1440. doi: 10.1093/icb/icz099.
6
Regulation of Drosophila Lifespan by bellwether Promoter Alleles.
Sci Rep. 2017 Jun 23;7(1):4109. doi: 10.1038/s41598-017-04530-x.
7
In vivo severity ranking of Ras pathway mutations associated with developmental disorders.
Proc Natl Acad Sci U S A. 2017 Jan 17;114(3):510-515. doi: 10.1073/pnas.1615651114. Epub 2017 Jan 3.

本文引用的文献

2
QUANTITATIVE GENETICS OF SEXUAL SIZE DIMORPHISM IN THE COLLARED FLYCATCHER, FICEDULA ALBICOLLIS.
Evolution. 1998 Jun;52(3):870-876. doi: 10.1111/j.1558-5646.1998.tb03711.x.
3
Complex constraints on allometry revealed by artificial selection on the wing of Drosophila melanogaster.
Proc Natl Acad Sci U S A. 2015 Oct 27;112(43):13284-9. doi: 10.1073/pnas.1505357112. Epub 2015 Sep 14.
5
Exaggerated trait growth in insects.
Annu Rev Entomol. 2015 Jan 7;60:453-72. doi: 10.1146/annurev-ento-010814-021045. Epub 2014 Oct 20.
6
A method for analysis of phenotypic change for phenotypes described by high-dimensional data.
Heredity (Edinb). 2015 Oct;115(4):357-65. doi: 10.1038/hdy.2014.75. Epub 2014 Sep 10.
7
Cryptic genetic variation: evolution's hidden substrate.
Nat Rev Genet. 2014 Apr;15(4):247-58. doi: 10.1038/nrg3688. Epub 2014 Mar 11.
8
Convergent evolution of sexual dimorphism in skull shape using distinct developmental strategies.
Evolution. 2013 Aug;67(8):2180-93. doi: 10.1111/evo.12100. Epub 2013 Apr 13.
9
Temperature-size rule is mediated by thermal plasticity of critical size in Drosophila melanogaster.
Proc Biol Sci. 2013 Apr 17;280(1760):20130174. doi: 10.1098/rspb.2013.0174. Print 2013 Jun 7.
10
Sex-specific weight loss mediates sexual size dimorphism in Drosophila melanogaster.
PLoS One. 2013;8(3):e58936. doi: 10.1371/journal.pone.0058936. Epub 2013 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验