Suppr超能文献

用于微创和机器人辅助手术的手术器械的二维和三维联合跟踪

Combined 2D and 3D tracking of surgical instruments for minimally invasive and robotic-assisted surgery.

作者信息

Du Xiaofei, Allan Maximilian, Dore Alessio, Ourselin Sebastien, Hawkes David, Kelly John D, Stoyanov Danail

机构信息

Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK.

WIREWAX, London, UK.

出版信息

Int J Comput Assist Radiol Surg. 2016 Jun;11(6):1109-19. doi: 10.1007/s11548-016-1393-4. Epub 2016 Apr 2.

Abstract

PURPOSE

Computer-assisted interventions for enhanced minimally invasive surgery (MIS) require tracking of the surgical instruments. Instrument tracking is a challenging problem in both conventional and robotic-assisted MIS, but vision-based approaches are a promising solution with minimal hardware integration requirements. However, vision-based methods suffer from drift, and in the case of occlusions, shadows and fast motion, they can be subject to complete tracking failure.

METHODS

In this paper, we develop a 2D tracker based on a Generalized Hough Transform using SIFT features which can both handle complex environmental changes and recover from tracking failure. We use this to initialize a 3D tracker at each frame which enables us to recover 3D instrument pose over long sequences and even during occlusions.

RESULTS

We quantitatively validate our method in 2D and 3D with ex vivo data collected from a DVRK controller as well as providing qualitative validation on robotic-assisted in vivo data.

CONCLUSIONS

We demonstrate from our extended sequences that our method provides drift-free robust and accurate tracking. Our occlusion-based sequences additionally demonstrate that our method can recover from occlusion-based failure. In both cases, we show an improvement over using 3D tracking alone suggesting that combining 2D and 3D tracking is a promising solution to challenges in surgical instrument tracking.

摘要

目的

用于增强微创手术(MIS)的计算机辅助干预需要对手术器械进行跟踪。在传统和机器人辅助的MIS中,器械跟踪都是一个具有挑战性的问题,但基于视觉的方法是一种很有前景的解决方案,其硬件集成要求最低。然而,基于视觉的方法存在漂移问题,并且在出现遮挡、阴影和快速运动的情况下,可能会完全跟踪失败。

方法

在本文中,我们开发了一种基于广义霍夫变换的二维跟踪器,它使用尺度不变特征变换(SIFT)特征,既可以处理复杂的环境变化,又能从跟踪失败中恢复。我们用它在每一帧初始化一个三维跟踪器,使我们能够在长序列甚至遮挡期间恢复三维器械姿态。

结果

我们使用从达芬奇研究套件(DVRK)控制器收集的离体数据在二维和三维上对我们的方法进行了定量验证,并在机器人辅助的体内数据上进行了定性验证。

结论

我们从扩展序列中证明,我们的方法提供了无漂移的稳健且精确的跟踪。我们基于遮挡的序列还表明,我们的方法可以从基于遮挡的失败中恢复。在这两种情况下,我们都展示了相对于单独使用三维跟踪的改进,这表明结合二维和三维跟踪是解决手术器械跟踪挑战的一个有前景的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb44/4893384/f52a87cff7a8/11548_2016_1393_Fig4_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验