Suppr超能文献

用于癌细胞机械表型分析的微流控细胞破碎技术

Microfluidic cell fragmentation for mechanical phenotyping of cancer cells.

作者信息

Kamyabi Nabiollah, Vanapalli Siva A

机构信息

Department of Chemical Engineering, Texas Tech University , Lubbock, Texas 79409, USA.

出版信息

Biomicrofluidics. 2016 Mar 15;10(2):021102. doi: 10.1063/1.4944057. eCollection 2016 Mar.

Abstract

Circulating tumor cells (CTCs) shed from the primary tumor undergo significant fragmentation in the microvasculature, and very few escape to instigate metastases. Inspired by this in vivo behavior of CTCs, we report a microfluidic method to phenotype cancer cells based on their ability to arrest and fragment at a micropillar-based bifurcation. We find that in addition to cancer cell size, mechanical properties determine fragmentability. We observe that highly metastatic prostate cancer cells are more resistant to fragmentation than weakly metastatic cells, providing the first indication that metastatic CTCs can escape rupture and potentially initiate secondary tumors. Our method may thus be useful in identifying phenotypes that succumb to or escape mechanical trauma in microcirculation.

摘要

从原发性肿瘤脱落的循环肿瘤细胞(CTC)在微血管中会发生显著破碎,只有极少数能够逃脱并引发转移。受CTC这种体内行为的启发,我们报告了一种基于癌细胞在基于微柱的分支处停滞和破碎能力来对其进行表型分析的微流控方法。我们发现,除了癌细胞大小外,机械性能也决定了破碎性。我们观察到,高转移性前列腺癌细胞比低转移性细胞对破碎更具抗性,这首次表明转移性CTC能够逃脱破裂并可能引发继发性肿瘤。因此,我们的方法可能有助于识别在微循环中易受或逃脱机械损伤的表型。

相似文献

1
Microfluidic cell fragmentation for mechanical phenotyping of cancer cells.
Biomicrofluidics. 2016 Mar 15;10(2):021102. doi: 10.1063/1.4944057. eCollection 2016 Mar.
3
Clinical phenotypes associated with circulating tumor cell enumeration in metastatic castration-resistant prostate cancer.
Urol Oncol. 2015 Mar;33(3):110.e1-9. doi: 10.1016/j.urolonc.2014.09.002. Epub 2015 Jan 13.
5
Biology and clinical significance of circulating tumor cell subpopulations in lung cancer.
Transl Lung Cancer Res. 2017 Aug;6(4):431-443. doi: 10.21037/tlcr.2017.07.03.
6

引用本文的文献

1
Capillary constrictions prime cancer cell tumorigenicity through PIEZO1.
Nat Commun. 2025 Sep 1;16(1):8160. doi: 10.1038/s41467-025-63374-6.
2
Capillary constrictions prime cancer cell tumorigenicity through PIEZO1.
bioRxiv. 2025 Jul 26:2025.07.22.666218. doi: 10.1101/2025.07.22.666218.
4
Single-Cell Proliferation Microfluidic Device for High Throughput Investigation of Replicative Potential and Drug Resistance of Cancer Cells.
Cell Mol Bioeng. 2023 Jul 28;16(5-6):443-457. doi: 10.1007/s12195-023-00773-z. eCollection 2023 Dec.
5
Mechanobiology and survival strategies of circulating tumor cells: a process towards the invasive and metastatic phenotype.
Front Cell Dev Biol. 2023 May 5;11:1188499. doi: 10.3389/fcell.2023.1188499. eCollection 2023.
6
Squeezing through the microcirculation: survival adaptations of circulating tumour cells to seed metastasis.
Br J Cancer. 2021 Jan;124(1):58-65. doi: 10.1038/s41416-020-01176-x. Epub 2020 Dec 1.
8
Flow-Induced Transport of Tumor Cells in a Microfluidic Capillary Network: Role of Friction and Repeated Deformation.
Cell Mol Bioeng. 2017 Aug 2;10(6):563-576. doi: 10.1007/s12195-017-0499-2. eCollection 2017 Dec.
9
A microfluidic device for label-free isolation of tumor cell clusters from unprocessed blood samples.
Biomicrofluidics. 2019 Aug 20;13(4):044111. doi: 10.1063/1.5111888. eCollection 2019 Jul.
10
Multi-sample deformability cytometry of cancer cells.
APL Bioeng. 2018 Jun 21;2(3):032002. doi: 10.1063/1.5020992. eCollection 2018 Sep.

本文引用的文献

1
Real-time deformability cytometry: on-the-fly cell mechanical phenotyping.
Nat Methods. 2015 Mar;12(3):199-202, 4 p following 202. doi: 10.1038/nmeth.3281. Epub 2015 Feb 2.
2
Sorting of circulating tumor cells (MV3-melanoma) and red blood cells using non-inertial lift.
Biomicrofluidics. 2013 Aug 21;7(4):44120. doi: 10.1063/1.4818907. eCollection 2013.
3
Hydrodynamic mechanisms of cell and particle trapping in microfluidics.
Biomicrofluidics. 2013 Apr 5;7(2):21501. doi: 10.1063/1.4799787.
4
Probing the mechanical properties of brain cancer cells using a microfluidic cell squeezer device.
Biomicrofluidics. 2013 Jan 10;7(1):11806. doi: 10.1063/1.4774310. eCollection 2013.
5
Rapid isolation of cancer cells using microfluidic deterministic lateral displacement structure.
Biomicrofluidics. 2013 Jan 7;7(1):11801. doi: 10.1063/1.4774308. eCollection 2013.
6
Recent advances in microfluidic techniques for single-cell biophysical characterization.
Lab Chip. 2013 Jul 7;13(13):2464-83. doi: 10.1039/c3lc50355k. Epub 2013 May 16.
7
Characterizing deformability and surface friction of cancer cells.
Proc Natl Acad Sci U S A. 2013 May 7;110(19):7580-5. doi: 10.1073/pnas.1218806110. Epub 2013 Apr 22.
8
Microfluidic breakups of confined droplets against a linear obstacle: The importance of the viscosity contrast.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Sep;86(3 Pt 2):036317. doi: 10.1103/PhysRevE.86.036317. Epub 2012 Sep 21.
9
Exploiting mechanical biomarkers in microfluidics.
Lab Chip. 2012 Oct 21;12(20):4006-9. doi: 10.1039/c2lc90100e.
10
Microfluidics-based assessment of cell deformability.
Anal Chem. 2012 Aug 7;84(15):6438-43. doi: 10.1021/ac300264v. Epub 2012 Jul 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验