Suppr超能文献

微流控中细胞和颗粒捕获的流体动力学机制。

Hydrodynamic mechanisms of cell and particle trapping in microfluidics.

作者信息

Karimi A, Yazdi S, Ardekani A M

机构信息

Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA.

Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

出版信息

Biomicrofluidics. 2013 Apr 5;7(2):21501. doi: 10.1063/1.4799787.

Abstract

Focusing and sorting cells and particles utilizing microfluidic phenomena have been flourishing areas of development in recent years. These processes are largely beneficial in biomedical applications and fundamental studies of cell biology as they provide cost-effective and point-of-care miniaturized diagnostic devices and rare cell enrichment techniques. Due to inherent problems of isolation methods based on the biomarkers and antigens, separation approaches exploiting physical characteristics of cells of interest, such as size, deformability, and electric and magnetic properties, have gained currency in many medical assays. Here, we present an overview of the cell/particle sorting techniques by harnessing intrinsic hydrodynamic effects in microchannels. Our emphasis is on the underlying fluid dynamical mechanisms causing cross stream migration of objects in shear and vortical flows. We also highlight the advantages and drawbacks of each method in terms of throughput, separation efficiency, and cell viability. Finally, we discuss the future research areas for extending the scope of hydrodynamic mechanisms and exploring new physical directions for microfluidic applications.

摘要

近年来,利用微流体现象对细胞和颗粒进行聚焦和分选一直是蓬勃发展的研究领域。这些过程在生物医学应用和细胞生物学基础研究中大有裨益,因为它们能提供具有成本效益的即时医疗小型诊断设备和稀有细胞富集技术。由于基于生物标志物和抗原的分离方法存在固有问题,利用目标细胞的物理特性(如大小、可变形性以及电学和磁学性质)的分离方法在许多医学检测中得到了广泛应用。在此,我们概述了通过利用微通道内固有的流体动力学效应进行细胞/颗粒分选的技术。我们重点关注在剪切流和涡流中导致物体横向迁移的潜在流体动力学机制。我们还从通量、分离效率和细胞活力方面突出了每种方法的优缺点。最后,我们讨论了扩展流体动力学机制范围和探索微流体应用新物理方向的未来研究领域。

相似文献

1
Hydrodynamic mechanisms of cell and particle trapping in microfluidics.
Biomicrofluidics. 2013 Apr 5;7(2):21501. doi: 10.1063/1.4799787.
3
Viscoelastic microfluidics: progress and challenges.
Microsyst Nanoeng. 2020 Dec 14;6:113. doi: 10.1038/s41378-020-00218-x. eCollection 2020.
5
A microfluidic-based hydrodynamic trap for single particles.
J Vis Exp. 2011 Jan 21(47):2517. doi: 10.3791/2517.
6
Deformability-induced lift force in spiral microchannels for cell separation.
Lab Chip. 2020 Feb 7;20(3):614-625. doi: 10.1039/c9lc01000a. Epub 2020 Jan 9.
8
Tunable hydrodynamic focusing with dual-neodymium magnet-based microfluidic separation device.
Med Biol Eng Comput. 2022 Jan;60(1):47-60. doi: 10.1007/s11517-021-02438-3. Epub 2021 Oct 25.
9
Signal-Based Methods in Dielectrophoresis for Cell and Particle Separation.
Biosensors (Basel). 2022 Jul 11;12(7):510. doi: 10.3390/bios12070510.
10
Microfluidic: an innovative tool for efficient cell sorting.
Methods. 2012 Jul;57(3):297-307. doi: 10.1016/j.ymeth.2012.07.002. Epub 2012 Jul 11.

引用本文的文献

1
Sheathless Elasto-Inertial Focusing of Sub-25 Nm Particles in Straight Microchannels.
Small. 2025 Aug;21(33):e2503369. doi: 10.1002/smll.202503369. Epub 2025 Jun 25.
3
Low-cost acoustic force trap in a microfluidic channel.
HardwareX. 2023 May 19;14:e00428. doi: 10.1016/j.ohx.2023.e00428. eCollection 2023 Jun.
4
Microfluidics geometries involved in effective blood plasma separation.
Microfluid Nanofluidics. 2022;26(10):73. doi: 10.1007/s10404-022-02578-4. Epub 2022 Sep 4.
5
Direct separation and enumeration of CTCs in viscous blood based on co-flow microchannel with tunable shear rate: a proof-of-principle study.
Anal Bioanal Chem. 2022 Nov;414(26):7683-7694. doi: 10.1007/s00216-022-04299-7. Epub 2022 Sep 1.
6
Recent advances in acoustic microfluidics and its exemplary applications.
Biomicrofluidics. 2022 Jun 13;16(3):031502. doi: 10.1063/5.0089051. eCollection 2022 May.
7
Enhanced inertial focusing of microparticles and cells by integrating trapezoidal microchambers in spiral microfluidic channels.
RSC Adv. 2019 Jun 18;9(33):19197-19204. doi: 10.1039/c9ra03587g. eCollection 2019 Jun 14.
8
Lab-on-a-Chip Platforms for Airborne Particulate Matter Applications: A Review of Current Perspectives.
Biosensors (Basel). 2022 Mar 24;12(4):191. doi: 10.3390/bios12040191.
9
Microfluidic systems for hydrodynamic trapping of cells and clusters.
Biomicrofluidics. 2020 May 20;14(3):031502. doi: 10.1063/5.0002866. eCollection 2020 May.

本文引用的文献

1
Vesicles and red blood cells in shear flow.
Soft Matter. 2008 Mar 20;4(4):653-657. doi: 10.1039/b716612e.
2
Giant vesicles in electric fields.
Soft Matter. 2007 Jun 19;3(7):817-827. doi: 10.1039/b703580b.
3
Bacterial aggregation and biofilm formation in a vortical flow.
Biomicrofluidics. 2012 Dec 12;6(4):44114. doi: 10.1063/1.4771407. eCollection 2012.
5
Microfluidic separation of live and dead yeast cells using reservoir-based dielectrophoresis.
Biomicrofluidics. 2012 Jul 13;6(3):34102. doi: 10.1063/1.4732800. Print 2012 Sep.
6
Emergence of a limit cycle for swimming microorganisms in a vortical flow of a viscoelastic fluid.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 2):056309. doi: 10.1103/PhysRevE.85.056309. Epub 2012 May 22.
8
Oscillating bubbles: a versatile tool for lab on a chip applications.
Lab Chip. 2012 Nov 7;12(21):4216-27. doi: 10.1039/c2lc40424a.
9
Microfluidic: an innovative tool for efficient cell sorting.
Methods. 2012 Jul;57(3):297-307. doi: 10.1016/j.ymeth.2012.07.002. Epub 2012 Jul 11.
10
Lateral migration and focusing of colloidal particles and DNA molecules under viscoelastic flow.
Lab Chip. 2012 Aug 21;12(16):2807-14. doi: 10.1039/c2lc40147a. Epub 2012 Jul 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验