Suppr超能文献

基因调控网络的神经模型:支持性元启发式算法综述

Neural model of gene regulatory network: a survey on supportive meta-heuristics.

作者信息

Biswas Surama, Acharyya Sriyankar

机构信息

Department of Computer Science and Engineering, West Bengal University of Technology (WBUT), BF-142, Sector-I, Salt Lake, Kolkata, India.

出版信息

Theory Biosci. 2016 Jun;135(1-2):1-19. doi: 10.1007/s12064-016-0224-z. Epub 2016 Apr 5.

Abstract

Gene regulatory network (GRN) is produced as a result of regulatory interactions between different genes through their coded proteins in cellular context. Having immense importance in disease detection and drug finding, GRN has been modelled through various mathematical and computational schemes and reported in survey articles. Neural and neuro-fuzzy models have been the focus of attraction in bioinformatics. Predominant use of meta-heuristic algorithms in training neural models has proved its excellence. Considering these facts, this paper is organized to survey neural modelling schemes of GRN and the efficacy of meta-heuristic algorithms towards parameter learning (i.e. weighting connections) within the model. This survey paper renders two different structure-related approaches to infer GRN which are global structure approach and substructure approach. It also describes two neural modelling schemes, such as artificial neural network/recurrent neural network based modelling and neuro-fuzzy modelling. The meta-heuristic algorithms applied so far to learn the structure and parameters of neutrally modelled GRN have been reviewed here.

摘要

基因调控网络(GRN)是不同基因通过其在细胞环境中编码的蛋白质之间的调控相互作用而产生的。GRN在疾病检测和药物发现中具有极其重要的意义,已经通过各种数学和计算方案进行建模,并在综述文章中有所报道。神经模型和神经模糊模型一直是生物信息学领域的关注焦点。在训练神经模型时大量使用元启发式算法已证明了其卓越性。考虑到这些事实,本文旨在综述GRN的神经建模方案以及元启发式算法在模型内参数学习(即加权连接)方面的有效性。这篇综述文章提出了两种不同的与结构相关的推断GRN的方法,即全局结构方法和子结构方法。它还描述了两种神经建模方案,如基于人工神经网络/递归神经网络的建模和神经模糊建模。本文对迄今为止应用于学习神经建模的GRN的结构和参数的元启发式算法进行了综述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验