Suppr超能文献

MetaSEM:基于元学习的单细胞 RNA 数据基因调控网络推断。

MetaSEM: Gene Regulatory Network Inference from Single-Cell RNA Data by Meta-Learning.

机构信息

School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China.

Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610051, China.

出版信息

Int J Mol Sci. 2023 Jan 30;24(3):2595. doi: 10.3390/ijms24032595.

Abstract

Regulators in gene regulatory networks (GRNs) are crucial for identifying cell states. However, GRN inference based on scRNA-seq data has several problems, including high dimensionality and sparsity, and requires more label data. Therefore, we propose a meta-learning GRN inference framework to identify regulatory factors. Specifically, meta-learning solves the parameter optimization problem caused by high-dimensional sparse data features. In addition, a few-shot solution was used to solve the problem of lack of label data. A structural equation model (SEM) was embedded in the model to identify important regulators. We integrated the parameter optimization strategy into the bi-level optimization to extract the feature consistent with GRN reasoning. This unique design makes our model robust to small-scale data. By studying the GRN inference task, we confirmed that the selected regulators were closely related to gene expression specificity. We further analyzed the GRN inferred to find the important regulators in cell type identification. Extensive experimental results showed that our model effectively captured the regulator in single-cell GRN inference. Finally, the visualization results verified the importance of the selected regulators for cell type recognition.

摘要

调控因子在基因调控网络(GRNs)中对于识别细胞状态至关重要。然而,基于 scRNA-seq 数据的 GRN 推断存在几个问题,包括高维性和稀疏性,并且需要更多的标记数据。因此,我们提出了一种元学习 GRN 推断框架来识别调控因子。具体来说,元学习解决了由高维稀疏数据特征引起的参数优化问题。此外,还使用了少样本解决方案来解决标记数据不足的问题。结构方程模型(SEM)被嵌入到模型中,以识别重要的调控因子。我们将参数优化策略集成到双层优化中,以提取与 GRN 推理一致的特征。这种独特的设计使我们的模型能够稳健地处理小规模数据。通过研究 GRN 推断任务,我们证实了所选调控因子与基因表达特异性密切相关。我们进一步分析了推断出的 GRN,以找到在细胞类型识别中重要的调控因子。广泛的实验结果表明,我们的模型有效地捕捉了单细胞 GRN 推断中的调控因子。最后,可视化结果验证了所选调控因子对于细胞类型识别的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d553/9916710/6fbbc16fcf27/ijms-24-02595-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验